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A b s t r a c t  

In this article we investigate the relationship between two coefficients used in sensitivity analysis of 
model output. One is the Fourier amplitude sensitivity test's coefficient, developed in the 1970s, and 
the other the Sobol' sensitivity indices, developed in the 1990s. Supposedly both methods are capable 
of computing the "main effect" contribution of model's input parameters to model's output variance. 
We discuss the equivalence of the two methods, and prove the identity of their prediction on two test 
cases. Relative advantage and disadvantages of the methods are also illustrated. © 1998 Elsevier 
Science B.V. All rights reserved. 

1. Introduction 

Sensitivity analysis of model output aims to quantify how a model depends on its 
input parameters. Global sensitivity analysis, in particular, tries to apportion the 
variation in the output variable(s) to the variation of the model input parameters, 
while local sensitivity analysis is usually concerned with the computation of the 
derivative of the model response with respect to the model input parameters 
(Saltelli and Von Maravi6, 1995). 
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In the 1970s a new method for global sensitivity analysis (SA) of complex 
chemical systems was introduced, which was superior to the local SA methods used 
till that time for similar applications. 

The new method, named Fourier amplitude sensitivity test (FAST) was based on 
Fourier developments of the output function, and allowed an ANOVA-like de- 
composition of the model output variance. FAST was superior to the local SA 
methods because (a) it could apportion the output variance to the variance in the 
input parameters and (b) It could be used to fix the non-influential parameters at 
their midpoint or "nominal value" (Cukier et al., 1973, 1975, 1978; Schaibly and 
Shuler, 1973, Koda et al., 1979; McRae et al., 1982). 

FAST is superior to commonly used methods for global sensitivity analysis, such 
as those based on correlation or regression coefficients. When using, for instance, 
standardised regression coefficients (SRC, Draper and Smith, 1981) for the purpose 
of SA, the analysis is only as good as the fit of the regression model. If the associated 
model coefficient of determination R 2 is low, then the SRC-based SA is of little 
value. Ranking the data, and using for the analysis the standardised rank regression 
coefficients (SRRC), may improve the R 2 value, but the cost of the transformation is 
to alter the models under analysis (see Saltelli and Sobol', 1995a). 

In spite of its merits, the new method was used rarely in the years subsequent to 
its discovery (for a review see Turanyi, 1990, or Helton, 1993). This was perhaps due 
to some disadvantages of the method such as (a) its computational complexity and 
(b) its scarce ability to compute the higher-order terms in the ANOVA-like 
decomposition of the model output's variance. In fact, when using FAST, one can 
estimate the individual contribution of each parameter to the output variance, i.e. 
what is known as a main effect in Statistics. 

Cukier et al. (1978) recognised that if D is the total variance of the model output, 
this can be decomposed in terms of increasing dimensionality as 

D = ~ D i W Z  Z D i j + ' " + D l z ' " n  (1) 
i = 1  l<_i<j<_n 

and that a first-order parameter sensitivity can be given by 

Di 
S, = -~.  (2) 

In principle, also the interaction terms Dij and the higher-order effects may 
contribute to the model variance, and hence add to the sensitivity of a parameter, 
but those terms are not easily computed with FAST. FAST practitioners dis- 
counted the relevance of those terms observing that FAST was a good method to 
use when the sum of the first-order terms was at least as high as 0.6 (Liepmann and 
Stephanopoulos, 1985). We are not aware of applications where interaction terms 
were actually computed. In other words, FAST is good for (quasi-)additive models, 
i.e. models with no important or significative interactions among factors. 

In 1990 the Russian mathematician Ilya M. Sobol' (1990a) developed a method 
for global SA which he defined as more general than FAST. His method also 
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computed ANOVA-like decomposition of the output variance, but in this case both 
the main effects Si, the interaction terms Sij and higher-order terms could be 
computed by straightforward Monte-Carlo integration of multidimensional inte- 
grals, e.g. 

and 

D = fK. f2(x) dx _ f 2  (3) 

Di .... i s = f ~ - . - f j  j~2...idxq...dxis, (4) 

where Di .... is is a generic term in the series development of D andj~,...i~ is a term in 
the Sobol' decomposition of f(x) into summands of increasing dimension (see 
Section 3). 

Sobol' also claimed that his decomposition is unique. Although the two methods 
(FAST and Sobol's) differ considerably in their theoretical and computational 
features, they both allow the evaluation of the fractional contribution to the 
variance off(x) which is due to each individual variable (main effect). Given that 
these are a property of the model and of the input parameter space, the values 
provided by the two methods should be identical. 

We have computed both measures of sensitivity and found them equal on 
a number of test cases, making allowance for experimental error. FAST appears to 
be computationally cheaper, and relatively independent of sample size once the 
Nyquist criterion is satisfied. Sobol' is computationally more intensive, and seems 
to be more dependent on sample size. It also gave more accurate results in one of 
the test cases. 

The advantage of Sobol' with respect to FAST substantially resides in its 
capability to compute higher-order terms in the variance series development (1), 
and is hence relevant when those terms make a significant contribution to the 
output variance. 

It should also be mentioned that FAST and Sobol' indices are not the only 
options in the arena of the variance-based methods. Iman and Hora (1990) have 
discussed an "Importance measure"; Krzykacz (1990) and McKay (1995), a "Cor- 
relation ratio". All those measures are amenable to the evaluation of the main effect 
in the variance decomposition scheme. 

In Sections 2 and 3 we briefly recall the basis of the FAST and Sobol' methods. In 
Section 4 two test cases are described, one an analytical model and the other 
a computational one. Results are presented in Section 5 and conclusions are 
summarised in Section 6. 

2. Fourier amplitude sensitivity test (FAST) 

The FAST method allows the computation of that fraction of the variance of 
a given model output or function which is due to each input variable. The key idea 
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underlying the method is to apply the ergodic theorem as demonstrated by Weyl 
(1938). This hypothesis allows the computation of an integral in an n-dimensional 
space through a mono-dimensional integral. 

Let the function 

f ( x )  = f ( x l ,  x l ,  . . . ,  x,,) 

be defined in the n-dimensional unit cube: 

K" = (xlO __N xi _< 1; i = 1, ... ,n). 

Consider the set of transformations 

(5) 

(6) 

and the integral 

f0 = fK" f ( x )  d x l  "'" d x , ,  

f 
T 

= lim __l_l f ( x ( s ) ) d s  (9) 
r--,oo2T - T  

are equal. 
Since the numerical computation of integrals like that in (9) is impossible for an 

incommensurate set of frequencies, an appropriate set of integer frequencies is used. 
The consequences of this change are that the curve is no longer a space-filling one, 
but becomes a periodic curve with period 2n, and approximate numerical integra- 
tions can be made. If these ideas are extended to the computation of variances, the 
variance of f may be computed through 

1 f' f2(x(s)) O -- ~ _ ds - f g ,  (10) 

where 

fo = ~ f ( x ( s ) ) d s .  (11) 

The application of Parseval's theorem to the computation of (11) allows to reach 
the expression 

D = 2 ~ (A~ + B]), (12) 
j = l  

(8) 

If a linearly independent set of frequencies {wl, . . . ,  w~} is chosen (no wi may be 
obtained as a linear combination of the other frequencies with integer coefficients), 
when s varies from - ~ to 0% the vector (x~(s), ... , x , ( s ) )  traces out a curve that 
fills the whole n-dimensional unit cube K", so that, following Weyl (1938), the 
integral 

xi = 9i(s in(wi 's)) ,  i = 1 . . . .  ,n. (7) 
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where the Aj and the B~ are the common Fourier coefficients of the cosine and the 
sine series, respectively. After Cukier et al. (1978), the part of this variance due to 
each individual input variable is the part of the summatory (12) extended only to 
the frequency assigned to each input variable in (7) and its harmonics, so that 

S, = 22,°°_-, (A~.w, + B~.w,) (13) 
227=1 (A~ + B~) ' 

is the fraction of the variance o f f  due to the input variable xi. The summation in p is 
meant to include all the harmonics related to the frequency associated to the input 
variable considered. This coefficient is equal to what is called a "main effect" in 
factorial design. Unfortunately, the fraction of the total variance due to interac- 
tions, i.e. the combined effect due to two variables that cannot be resolved by the 
sum of individual effects, may not be computed with this technique up to the 
present, although Cukier et al. (1978) make some reference to the possibility of 
computing higher-order terms contribution (see the next section). 

The computation of formula (13) for each input variable needs the evaluation of 
the function f at a number of points in K" to compute each Ai and each B~, 
i = l , . . . , n .  

The first step in the computation of the indices is the selection of the set of integer 
frequencies. Cukier et al. (1975) provide an algorithm to produce those optimal sets. 
Those sets are optimal in the sense of being free of interferences until fourth order, 
and demanding a minimum sample size. This minimum is determined by the 
Nyquist criterion and is 2Wmax q- 1, where Wma x is the maximum frequency in the set. 
Schaibly and Shuler show (1973) that the results are independent of the assignation 
of frequencies to the input parameters. The selected points are equally spaced 
points in the one-dimensional s-space. A study of the errors due to the use of integer 
frequencies is in Cukier et al. (1975). 

3.1. Sobol' sensitivity indices 

The sensitivity indices were developed by Sobol' (1990a, translated in 1993), who 
based his earlier work on the Fourier Haar series (Sobol', 1969). Sobol' considered 
his method as a natural extension of the Fourier-based FAST approach. Let us 
consider again the function f ( x ) = f ( x x ,  xl, . . . ,  x,) defined in the n-dimensional 
unit cube. Under assumptions described in Sobol' (1990a), it is possible to decom- 
pose f (x )  into summands of increasing dimensions: 

f ( x l  . . . .  ,x,) =fo + ~ fi(xl) + ~ ~ ~j(x,, xj) + ... +f12.. . ,(xl,  x2, ... ,x,), 
i = 1  l <i<j<n 

(14) 

where fo is a constant and the integrals of every summand over any of its own 
variables is zero: 

f o f l  . . . .  is(Xia, ... ,xi)  dxik = O, <_ <<_ S. (15) 1 k 
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The total variance o f f (x )  can be written as D = Sx.f2(.2)d.2 - fo 2 while 

Di .... i = f j  . . .  , s (x, , ,  . . . , x , , ) d x , , . . .  dxi~ (16) 

is a contr ibut ion to the total variance due to a generic term J~l...i, in the series 
development .  At this point  the sensitivity estimates Sil...i, can be introduced: 
Si .... ~s = Di .... UD. Given that  the relation 

D =  ~ O i + 2  ~, D i j +  "" +O,2. . .n  (17) 
i=1 l<_i<_j<_n 

can be proven (Sobol' 1990a, same expression as in FAST), it follows that  
~ "  S~ .... ~s = 1, where the sum with inverted commas  indicates sum over all the 
combinat ions  of indices. This ANOVA-l ike  decomposi t ion  is conceptually identical 
to the one realised in FAST. In the t rea tment  of numerical  experiments, similar 
decomposi t ions  are discussed in Cotter  (1979), Cox (1982), Efron and Stein (1981) 
and Sacks et al. (1989). These articles are reviewed in Archer et al. (Submitted). The 
terms Si .... ~, can be considered as a natural  sensitivity estimates, as they give the 
fraction of the total variance o f f (x )  which is due to any individual parameter  or 
combina t ion  of parameters.  In this way, for example, $1 is the main effect of 
parameter  xl, $12 is the interact ion effect, i.e. that  part  of the ou tpu t  variation due 
to parameters  xl  and 12 which cannot  be explained by the sum of the effects of 
parameters  xl and 12. Finally, the last term $123..., is that  fraction of the ou tpu t  
variance which cannot  be explained by summing  terms of lower order. When  using 
sensitivity indices it is also possible to part i t ion the input  variables set in such a way 
as to compute  the "variable total effect term" STi. This gives the sum of all the 
Si .... is terms where at least one of the il, . . . ,  is is equal to i. For  a function of three 
variables, for example 

ST1 = S 1 -~- $12 -~- $13 -~- $123.  (18) 

The applicability of these sensitivity estimates is related to the possibility of 
evaluating the mul t id imensional  integrals (such as Eq. (16)) using Monte-Car lo  
methods.  

As an example, the estimates of sample mean  and variance are 

N 
1 s 1 ~ f2(Xm) (19) 

m = l  

where Xm is a sampled point  in the space K n, and  N the size of the sample. The 
partial  variances needed to compute  the main effects are 

1 u 
~i  + L  2 = -~ ~', f(uim,Xim)f(l~im,Xim) (20) 

m = l  

where u and v denote different realisations of the vector (11, x2, . . . ,  x~-1, x~+ 1, . . . ,  x,). 
Eq. (20) can be interpreted as follows: in order  to compute  the contr ibut ion to the 
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total variance due to parameter X~ multiply values of f obtained by sampling 
independently all the variables by corresponding f values obtained by resampling 
all the variables except X~. If X~ is an important variable, then high values of the 
first "f" term in the ( f x f )  product will be multiplied by similarly high ' f "  values in 
the second term. Otherwise, the pairing of terms will tend to be random, high values 
being possibly multiplied by the lower ones, and the/)~ value will in general be 
smaller. The higher-order interactions and the total effects terms are computed by 
way of integrals of the same form as (20) above. 

A recent application of Sobor indices to a test case of atmospheric chemistry can 
be found in Saltelli and Hjorth, (to appear). 

3.2. Sample generation 

Quasi-random numbers have been used for the computation of the Monte-Carlo 
integrals. A description of the LP~ sequences can be found in Sobor (1967, 1976, 
1990b). As discussed in Sobor (1990b) quasi-random numbers are characterised by 
an enhanced convergence under certain limitations (in the value of n; see also 
Bratley and Fox, 1988; Sobol' et al., 1992; Davis and Rabinowitz, 1984). 

4. Test functions 

4.1. Analytical test case 

In order to compare the results against exact analytical values the following 
function is used: 

/1 

f =  1--[ gi(xi), (21) 
i = 1  

where the function f is defined in the n-dimensional unit cube (Eq. (6)) and the a's 
are parameters. Fig. 1 gives plots of the g terms for different values of "a". The 

[4xi - 2[ + ai 
g~(xg)= l + ai ' ai >_ 0 (22) 

with all a's -- 0, was used in Davis and Rabinowitz (1984) to test multidimensional 
integration. The function (21), (22) has also been used in Saltelli and Sobol 
(1995a, b). 

For all g functions, 

f~  gi(xi) dxi = 1 

and therefore 
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2 

1 

9(a,x) 

0 0 
0.0 

a=O 

a=9 

a=99 

I 

0.5 1.0 

Fig. 1. 

The function gi(x~) varies as 

1 1 
- - .  (23) - -  <~ gi ( X ) i  ~ 1 + 1 + ai 1 1 +a~ 

For  this reason the value of the a's determine the relative impor tance  of the input  
variables (the x's). For  example, if ai = O, 

0 < g,(xi) < 2 

and x~ is an impor tan t  variable. If a~ = 9, 

0.9 < gi(xi) <- 1.1 

and x~ is much  less important .  If a~ = 99, 

0.99 < gi(x) < 1.01 

and the variable x~ is insignificant. For  this function the sensitivity indices can be 
compu ted  analytically (Saltelli and Sobol', 1995a). The partial variances of the 
first-order are 

1 
D~ = 3(1 + a~) 2 (24) 
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Table 1 
List of input parameters and their p.d.f, for the level E exercise 

Notation Definition Distribution Range Units 

T Containment time Uniform [100, 1000] yr 
kx Leach rate for iodine log-uniform [10- 3, 10- 2] yr-  1 
kc Leach rate for Np chain nuclides log-uniform [10 -6, 10-5] yr-1 
v Ci) Water velocity in geosphere (first layer) log-uniform [10 -3, 10 -1] m/yr 
l (1) Length of geosphere (first layer) Uniform [100, 500] m 
Rt 1~ Retention factor for I (first layer) Uniform [1, 5] - -  
R~ 1) Factor to compute ret. coeff, for Np 

0( 2 ) 

/(2) 

Rt 2) 
R~ 2) 

W 

(first layer) 
Water velocity in geosphere 
(second layer) 
Length of geosphere (second layer) 
Retention factor for I (second layer) 
Factor to compute ret. coeff, for Np 
(second layer) 
Stream flow rate 

Uniform [3, 30] - -  

log-uniform [10- 2, 10- l] m/yr 
Uniform [50, 200] m 
Uniform [1, 5] - -  

Uniform [3, 30] - -  
log-uniform [105, 107] ma/yr 

while the higher-order partial variances are simply the product of the lower ones, 
i.e. 

D12 = D 1 D 2 .  (25) 

The total variance is given by the product of the first-order terms: 

n 

D = - 1 + 1~ (1 + D,). (26) 
i = 1  

For the numerical computations, Sobor LP-c sequences have been used. 

4.2. Level  E test case 

The Level E model is a very well-known test case (OECD, 1989; Robinson and 
Hodgkinson, 1987). It includes 12 uncertain parameters whose inputs take the form 
of probability distributions (see Table 1), and simulates the transport of radionucl- 
ides from an underground nuclear waste disposal, through a geosphere made of two 
layers of different geochemical properties, up to the biosphere and man. The 
processes modeled include dispersion, advection, retention and radioactive decay 
for the 129I isotope and the 237Np, 233U, 229Th decay chain. The output considered 
in the present analysis is the annual dose to man, between t = 0 and 10 7 yr. The 
model is strongly nonlinear and nonmonotonic, as indicated by the R 2 values. Even 
when computed on the rank transformed data, R 2 can be as low as 0.1 at some time 
points. Level E input is given in OECD (1989), and an analysis of its sensitivity is 
given in Saltelli et al. (1993) and Saltelli and Homma (1992) and Bolado et al. (1995). 
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5. Results and discussion 

Both test cases discussed in this article can be considered as difficult for the 
purpose of SA. Both are nonlinear, nonmonotonic,  and nonadditive in their input 
parameters. 

5.1. The g(x) function 

A set of test cases were considered where all variables were equally important: all 
ai's were set equal to either 0, or 1, or 9 or 99. According to Saltelli and Sobol' 
(1995a) this is the most difficult case for SA. The problem dimensionality (i.e. the 
number of variables n) was varied between 5 and 11. Results are given in Fig. 2. 
Here we have plotted: 
- Sobol' average first order index ( & )  at base sample size N = 4096. The number 

of model evaluation at each n is (n + 1)N. The average ( & )  is taken over the 
n variables. 

- FAST average index; the sample size, equal to the number of model evaluations, 
was different for each n value (see Table 2) 

- The analytical value (just one number: the analytical Si values are identical given 
that all the ai's are equal). 

0.15 

© 

0.10 

0.05 

0.00 - - '  
4.0 

0.20 © 

0.15 

0.10 

0.05 
4.0 

a(i)=O 
i 

• Analytic 
© FAST 

Sobol' 

© 

, 

6 0 8.0 
dimension 

a(i)=9 
i 

81o 6.0 
d i m e n s i o n  

a(i)=l 
i 

0.15 

0.10 

0.05 

~ o.oo i , i 

10.0 12.0 4.0 61.0 81.0 10.0 
d i m e n s i o n  

® 

a(i)=99 
i 

0.20 
O 

0.15 

~ 0.10 

' 0.05 ' ' 
10.0 12.0 4.0 6.0 80. 10.0 

d i m e n s i o n  

Fig. 2. 

12.0 

12.0 
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Table 2 

455 

Number of variables Sample size used Minimum (Nyquist) size 

5 313 79 
6 393 99 
7 697 175 
8 1001 251 
9 1289 323 

10 1641 411 
11 1977 495 

0.18 

0.13 

- -  Analytic 
O Sobol' 128 
[] Sobol' 256 
C, Sobol' 512 
A Sobel' 1024 
• FAST 157 
• FAST 313 
• FAST 625 
• FAST 1249 

a(i)=0 
i 

8 

o • [ ]  

A 

A 

I I I 

0'081.0 2.0 3.0 4.0 5.0 
variable number 

Fig. 3. 

There is a general agreement between the three sets of points, Sobol' giving better 
fit to the analytical values at such a large sample size. The effect of sample size was 
investigated in Fig. 3 for the n = 5, ai's = 0 point. Here the individual indices (not 
averaged) are given at different sample sizes as marked in the figure. It should be 
kept in mind that for the computation of the Sobol' indices, the value given in the 
legend of Fig. 3 is N, the base sample. This must be multiplied by (5 + 1) in order to 
obtain the total number of model evaluations. FAST appear to be fairly stable and 
insensitive to sample size as long as the Nyquist criterion is satisfied. FAST also 
shows a clear positive bias for this point (this was the worst case for FAST among 
those of Fig. 2). Sobol' is much more dependent on the sample size. It also appears 
biased toward higher values. Yet Sobol' indices converges steadily to the true value. 
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5.2. Level E model 

The results for this test case are shown in Figs. 4 and 5. Only the four most 
important variables are shown, the other variables having main effect of practically 
zero. Sobol' was tried at base sample size N = 1024 and 4096. The number of model 
evaluations was (12 + 1)N, as 12 is the number of variables. FAST could be 
computed with as little as 587 model evaluations. 

It can be seen that the main effects for this model are quite low, according to both 
methods. There is a general agreement between the two methods, higher for the 
larger Sobol' sample. 

The importance of the interaction and higher-order terms for this test case is 
shown in Figs. 6(a)-(i), the remaining three variables being unimportant. These 
figures compare the main effect Si (open circle) against the total effect STi (full circle) 
for each variable. 

This set of figures is particularly instructive. First, it shows that a sensitivity 
analysis based on the main effects alone may be misleading, especially for computa- 
tional models. Unlike the experimental design settings (see e.g. Box et al., 1978), 
where parameters are usually varied within controlled and generally narrow 
ranges, in computational experiments large ranges of variation are usually ex- 
plored. (A computer run is in general less expensive than a physical experiment.) 
The larger the range of the inputs, the lesser the model linearity and additivity. 
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Furthermore, a closer look at the Sri may give a considerable insight into what 
the important  interaction (or higher-order) terms can be at the different time point. 
XPATH(1) at t = 2 x l0 s is likely to interact with FC(1) and VREAL(1). FC(1) 
interacts with STFLOW at late times, and so on. 

6. Conclusions 

A comparison of the predictions and of the performances of the FAST and Sobol' 
indices has been realised by means of a computational  experiment. Both indices 
have been applied to two test cases at different sample sizes and/or at different 
problem dimensionality. 
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Although the computation of the two indices follow quite different routes, they 
can estimate the same statistical entity, i.e. the main effect contribution to the 
output variance decomposition in the ANOVA terminology. Our results seem to 
vindicate this hypothesis. The two indices tend to yield the same number when 
estimating the main effects. 

FAST appears to be computationally more efficient, and is clearly a cheaper 
method to predict sensitivities associated to main effects. From the limited experience 
of the present study, it also seems that FAST is more prone to systematic deviations 
from the analytical values (bias), perhaps because of the interference problem. 

Sobor indices are computationally more expensive, although they converge to 
the analytical values. Furthermore, these indices provide a unique way to estimate 
the global effect of variables as well as interaction terms of any order. 
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