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This paper deals with the random balance design method (RBD) and its hybrid approach, RBD-FAST.
Both these global sensitivity analysis methods originate from Fourier amplitude sensitivity test (FAST)
and consequently face the main problems inherent to discrete harmonic analysis. We present here a
general way to correct a bias which occurs when estimating sensitivity indices (SIs) of any order -
except total SI of single factor or group of factors - by the random balance design method (RBD) and its
hybrid version, RBD-FAST. In the RBD case, this positive bias has been recently identified in a paper by
Xu and Gertner [1]. Following their work, we propose a bias correction method for first-order Sls
estimates in RBD. We then extend the correction method to the SIs of any order in RBD-FAST. At last, we
suggest an efficient strategy to estimate all the first- and second-order Sls using RBD-FAST.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Global sensitivity analysis of model output consists in quanti-
fying the respective importance of input factors over their entire
range of variation. Many techniques have been developed in this
field (see [2,3] for a review), this includes for example screening
methods [4], density-based methods [5,6] and also derivative-
based methods [7,8]. But the most popular are the variance-based
methods that rely on ANOVA decomposition [9-11].

ANOVA decomposition and sensitivity indices. Let X = (X1, ...,Xp)
be a random vector and Y = f(X) e R, where f is a square-integr-
able function. Under the assumption that the components of X are
independent, the variance V of the model output Y can be
decomposed as

p

V=Y > Vi M

k=11<ij<--<ip<p
where

v ST 1RO Var(E(Y X < ) @

J = i1k}
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where Var(-) and E(-|-) denote variance and conditional expecta-
tion, respectively. Thus, if V#0 (i.e. Y is not almost surely
constant), dividing both sides of (1) by V, yields a positive and
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normalized decomposition

p
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where
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e = 1<ij<---<i<p 4)
are the so-called kth-order SIs—or Sobol’ indices.

In the case of an additive model - ie. f(Xj,....Xp) =
SP_ frXy) - all terms but the first-order SI are zero and we
obtain a full decomposition with only Sy, ...,Sp. On the contrary, if
fis a non-additive function, it is necessary to evaluate higher-
order terms to point out which interactions are significant. In
practice, the first- and second-order SIs generally provide a good
overview of the global variations of a model output.

FAST and its derived methods. Different methods have been
developed to estimate variance-based SIs, the FAST method,
introduced in the 1970s, is one of the earliest. The three
introduction papers [12-14] describe how to compute main
effects - i.e. first-order sensitivity indices — exploiting Weyl’s
ergodic theorem [15]. Then, in a review article [16], the authors
precise the underlying theory considering multiple Fourier series,
and suggest a decomposition of variance (see Eq. (2.29) in [16])
which allows to consider higher-order SIs. But, in practice, many
sources of error occur and it is generally impossible to get
accurate estimates at low computational cost. As a consequence
FAST has only been applied to estimate first-order and total Sls in
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small dimension (see the EFAST method due to Saltelli et al. [17]
for total SIs).

The RBD and Hybrid FAST-RBD (HFR) methods, proposed in
2006 by Tarantola et al. [18], partially overcome the inherent
drawbacks of FAST using a new sampling technique based on
Satterthwaite’s random balance designs [19]. These methods have
been introduced to estimate first-order Sls, and as Mara [20]
notices, it is also possible to estimate SIs of any order or closed
and total sensitivity indices, using the HFR method (renamed
RBD-FAST).

Recently Plischke [21] derived another FAST-like method,
named Effective Algorithm for computing global Sensitivity
Indices (EASI), which estimates sensitivity indices with any input
sample while FAST, RBD and RBD-FAST use specific experimental
designs.

In Section 2, we briefly recall the FAST method and discuss the
different sources of error that affect the accuracy of SI estimates.
In Section 3, we present the specific problem of interferences in
RBD which leads to the positive bias of the first-order SIs and we
propose a bias correction method. In Section 4, we extend this
technique to the sensitivity indices of any order in RBD-FAST, and
in Section 5, we describe an efficient strategy to estimate all the
first and second-order SI using RBD-FAST. Numerical examples
are presented in Section 6 to illustrate the accuracy of the
proposed bias correction method. Conclusions and ideas for a
future work are summarized in Section 7.

2. Sources of error in the FAST method
2.1. Description of the FAST method

The FAST method is based on a specific experimental design -
the so-called search curve - which allows to use discrete Fourier
transform. The experimental design (x),_ y is such that

xk = Gi(sin(wisg +y)), i=1,...,p, k=1,....N, (5)

where the w;’s are integer frequencies - free of interferences up to
a certain order (see Section 2.2) - the G;'s are functions to be
settled so as to impose probability density functions on the input
variables X;, ¢; are random phase-shifts and (sy), _ ;_y is defined

as
S = 21%%};12. 6)

In particular, to uniformly sample the marginal distributions over
[0, 1], one shall use (see for example [17])

1 . 1
Gi() = Earcsm(-)Jr 5 (7)
The Fourier spectrum of the discrete signal (f(x/, . .. ,x{,))j _1.nCan
be decomposed with respect to the frequencies wy,...,wp, and
the following estimators can be defined
V=" > e’ ®)
1<|n|<N/2
V? = Z ‘6kwi ‘2' (9)
1<kl <Ny
‘//i\j = Z ‘6kw,-+le 2| (10

2< [k[+ ]l <Ny

and so on; where N; is the highest harmonic considered as non-
negligible, N, is the order over which the linear combinations of

w; and w; are considered as negligible, and

én — %Zf(xl o 'X]p)e—mZn(;—l)/N‘ _
j=1

N2
N =Z

<n< 11

is the n-th complex discrete Fourier coefficient. Finally, dividing
(9) (resp. (10)) by (8), we get the estimator of a first-order (resp.
second-order) SI:

~ 2
& 1<k =N, |Crey
S = < k| <N :Ul |2 ) (12)
Zlg\n\gN/Z Cn
~ 2
3;: EZg\kH "SNz‘Ck(‘)i+l(‘)j| (13)

A (2
Els\n sN/Z‘C"|

The accuracy of these estimates naturally depends on the sample
size and we can observe an empirical convergence to the
theoretical values as N tends to +oo. But the dependence is
intricate; in addition to the truncation error, we distinguish two
main sources of error.

2.2. Interferences

Whenever a linear combination of the frequencies wy, ..., is
equal to zero, some parts of variance could be attributed by error
to other ones in the decomposition of the Fourier spectrum. For
example, if —2w;+w;=0, the discrete Fourier coefficient
€20, = €, contains information from both X; and X5, and should
not be totally attributed to §1\ and §; These interferences can
sometimes cause a bias, and to alleviate their effect, we adopt the
criterion proposed by Schaibly and Shuler [13] to choose fre-
quency sets free of interferences up to a certain order M

p )4
> awi#0 for Y |af <M+1. (14)

i=1 i=1

2.3. Aliasing

Only linear combinations such that —-N/2 <w= Y?_, qw; <
N/2 are unambiguously represented by the discrete sampled signal. If
w is out of this range, its spectral component is falsely attributed to
another frequency inside the Fourier spectrum. To avoid this aliasing
phenomenon, which can lead to positively biased estimators, it is
necessary to satisfy the Nyquist-Shannon theorem, i.e. to impose that
the sampling rate is large enough. As a consequence, the sample size
is bounded from below as follows:

N>2M max w;, (15)
1<i<p

where M is defined in the previous paragraph. Practitioners generally

set

Ni=Ny=---=Ng=M, (16)
but this constraint is not necessary, and the criterion stated in (14)

and (15) can be formulated in a more general way. Indeed, for all
1<q<p, consider Ny e N*, and for all 1 <i; < --- <ig <p, define

Ailmiq = {(a1, e ,ap) € Zp‘vl¢{l], . ,iq},a,- =0 and Z |a,‘m ‘ < Nq}

l<m<gq

an

and

A=) U A 18)

q=11<ij<-<ig<p
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Hence we propose to replace (14) and (15) by

p
> aw;i#0 forall (a,...,a) €A (19)
i1
and
N>2 max Zaw,, (20)

~p) €

respectively. Note that if (16) is satisfied, (19) and (20) are equivalent
to the classic criterion stated in (14) and (15).

3. Random balance design method

As we noted in the previous section, using a distinct frequency
per input factor in the FAST method imposes restrictive con-
straints on the sample size. To overcome this drawback, an
alternative sampling method is employed in RBD.

3.1. Sampling method

In contrary to FAST, in the RBD method, all the w; are equal to
a unique frequency w and input variables are distinguished by
taking random permutations of the coordinates of the sample
points. Let o4,...,0, denote random permutations on the set
{1,...,N}, the experimental design (x), _; y is such that

= Gi(sin(ws4,))), Vi=1,...,p and Vk=1,...,N. 21

One shall choose an odd integer N to get a good space-filling
design. In this case, RBD technique is very close to Latin hyper-
cube sampling introduced in 1979 (see [22]); the only difference
is that the RBD design points are located at the center of the cells
(see Fig. 1).

3.2. Estimator

RBD sampling method can be used to estimate first-order SI.
The estimator of the total variance is defined as in FAST and the
part of variance due to the factor X; is estimated by

2

Vi= > e, (22)
1<kl <N
with
G =1G) ) —i i
rkrw sz(xl 0 ----'XZ [ )e ikew2n(j 1)/N' 23)

j=1

0.8
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where ¢;! is the inverse permutatlon of o;. Indeed, considering a
fixed i, the design points (x1 U), Kl )j= 1.~ are such that the
ith coordinate is sampled with respect to the frequency w and the
other ones are sampled in a random way because

o 1G) .
X' = Gk(SIH((USak(a;](j))))

Gy(sin(ws;)) if k=i,

Gr(sin(wsg ) if k#1, (24)
where ¢}, = 0,007 is almost surely a non-trivial permutation.
Therefore, in the Fourier spectrum of the signal

T SR I 25)

the harmonics of w are attributed to the partial variance of X
Thus, using FAST estimator, we get Eqs. (22) and (23).

Remark 1. The choice of the frequency w seems to be of
secondary importance. However, to avoid aliasing, the most
efficient value is the smallest one, typically w=1. In this case,
the aliasing phenomenon is negligible and consequently, there is
no more restriction on the sample size as in Eq. (15).

3.3. Bias

As we explained in the last section, the RBD estimator
is so deﬁned because the harmonics of w in the signal
(f(x‘T U), ))]—1 n are supposed to be only related to the
part of varlance Vi due to X;. But it is essential to notice that,
since the factors (Xy),.; are randomly sampled, the remammg
part of variance - denoted V_; - appears in the signal (f(xl (’), .

K ))j=1.~ as a random noise. Therefore, a random fraction of
each harmonic of w is related to V_; and is falsely attributed to V;.
Xu and Gertner [1] quantified this interference between the
harmonics of o and the random noise, showing that for any ¢,
we have
V.
E( N
where ;! denotes the theoretical unbiased kth harmonic of w.

Thus, following Eq. (22), we define the bias-corrected estimator of
V; as

N
Ck(lu )_ |Ck(u

(26)

— 2N
V= V—T‘v,,, 27)

where V_; is an estimator of V_; defined, assuming the bias
correction, as

V_i=V-VE (28)

0.8
0.6
0.4

0.2

0 0.2 0.4 0.6 0.8 1
RBD sampling

Fig. 1. Comparison between Latin hypercube and RBD samples in two-dimensional unit hypercube with sample size 15.
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Hence
Vi= Vlaﬁw Vo) 29)

and dividing both sides of the equality by V, we obtain
S_§—§ﬁa —S5), (30)
where S,- and Sf are the RBD estimator of the first-order sensitivity
index and the corrected one, respectively. Finally, setting
4=2N;/N, we get the explicit formula

S o5

1

A &
m(l—si). 31

Remark 2. It is important to observe that the larger N and S;, the
lower the bias.

Remark 3. In his paper, Plischke [21] suggests to apply exactly
the same bias correction to the EASI estimates (see Eq. (7) in [21]).
His approach is based on a bias correction method for correlation
ratios due to Kelley [23].

4. Hybrid approach: RBD-FAST

The underlying idea in RBD-FAST is to combine both RBD and
FAST sampling approaches. Therefore, this new method is natu-
rally faced with the classical drawbacks of FAST, but in a lesser
extent. The main interest of the hybrid approach is that estima-
tion of higher-order SI is possible.

4.1. Sampling method

For this purpose, the p input variables are divided into groups
of approximatively equal cardinal. Then each group is assigned a
distinct random permutation and each factor of the group a
distinct frequency chosen from a frequency set assumed free of
interferences up to a given order (see Section 2.2). For example,
we can have the following configurations:
6 factors : X] X2 X3 X4 X5 X5
W13 W1WW3,
S—— ———
(o3} [}
6 factors : X1 X2 X3 X4 X5 Xg
W12 W1 W13,
S—— S Y
a1 02 o3
7 factors : X1 Xy X3 X4 X5 Xg X7
W13 W17y W1Wy.
S—— N~ Y

o1 02 03

Remark 4. Tarantola et al. [18] and Mara [20] present RBD-FAST
(or HFR) in another way: the p input variables are partitioned in
the same way but the permutations are applied within the groups
and a different frequency is associated to each group. Actually, the
methods are strictly equivalent; these just are two different
points of view.

4.2. Estimators

This hybrid sampling method allows to define the estimator of
SI of any order. In particular, considering two factors inside the
mth group associated with the frequencies w; and w; respectively,
we can define the part of variance of their interaction as
Vij = ‘CZ&");Jrl(uj |2' (32)
2 < k[ +]I| <N,

where N, is the value over which the linear combinations of w;
and wj; are considered as negligible and where

ot () Tt (W ,—i(ke; + lw))27(n—1)/N
Cron 1, = N Zf(x sooxom Mye i /N, (33)
n=1
In the same way, considering a factor inside the mth group
associated with the frequency w;, we can define its part of
variance as

Vi= >

1<kl <N

e |, 34)

where N, is the highest harmonic considered as non-negligible
and with

m Om n) Ot (M) —ikeo; _
wa, — Zf(x 1( X ( ))e ikw;2m(n 1)/N_ (35)
n_l
.
Indeed, considering the sample points (xr (’), ...xgm U))jzl.,.N

where m is fixed, for 1 <k <p, we have

(i) if X is associated with the couple (w;,61,) then

o=

17 . 1
Xm0 = G(sin(wis,, 5-15) = Gi(Sin(e;s;)), 36)

(ii) if X is associated with a couple (w;,ay), for n# m, then

Tm

16 .
Xm0 = G(sin(@is 5, 5-1): (37)

where ¢,00;! is almost surely a non-trivial permutation. There-
fore, all input variables outside the group associated with o, are
randomly sampled, and the other ones are sampled with respect
to their frequencies. Applying FAST’s estimator, Egs. (32)-(35)
follow.

4.3. Bias

The phenomenon leading to positive biases described for the
RBD method occurs in the same way for RBD-FAST. Therefore
parts of variance can be corrected with an analogous technique.

Let X, ,..., Xm, be the d input factors inside the mth group, and
P be a nonempty subset of {my,...,my}. We denote Vp the part of
variance due to the interaction between the input variables
Xi)icp (e.g. if P={i}, Vp is simply V;, and if P={i,j}, Vp is V}). Let
Vp be the RBD-FAST classical estimator of Vjp, previously described
in Egs. (32) and (34) for card(P)=1 and 2. Following RBD bias
correction, we first define the estimator of the positive bias Bp as

B = "0V, (38)

and the corrected estimator of Vp as
Vi = Vp—Bp, (39)

where n(P) is the number of Fourier coefficients taken into
account to estimate Vp. \7,\,» is an estimate of the part of variance
which is not due to any subset of factors contained in {my, ...,mgy}
defined, assuming the bias correction, as

V=V- Y V. (40)

- niP) (o o
- (v_ Z vQ>, (41)
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and dividing both sides of the equality by V, we get

< _<o P
N

Se=5-—2 1= 3 55, (42)

Q= tmy..mg)
Qs0

where §; and g are the RBD-FAST estimator of the SI Sp and the
corrected one, respectively. Then setting

_nQ

Ao N for any nonempty subset Q € {my, ..., mg} (43)
and
= > ja (44)
Q= (my..mg}
Q#0

we conclude with the explicit formula

p=S—""1- 3 S| (45)
1 ) Q< (my...mg)
Q#0

(see details in Appendix A).

Remark 5. This bias correction formula requires the knowledge of
the biased estimators Sy of any order relative to the input factors
(X); c p- Unfortunately, the estimation of the terms over a certain
order is quite difficult; so in practice, it is necessary to neglect SI
over a certain degree ¢ and to consider the following bias correction:

=51 X S, (46)
1-2 el
Q # 0,card(Q) = &
where
i= > ‘o 47)
Q= (my,..mq)

Q #0.card@Q < &

Remark 6. An analogous formula for closed SI can be deduced
from (45). Keeping the same notations as previously, such indices
are defined as

PR (48)

QcPQ#0

closed
selosed —

and we have

~closed,c  ~closed Aclosed ~
Sp =5 —ﬁ 1- > So (49)
- Q:lQmL,o,mdl
losed closed, .
where iose and S,C,m © are the RBD-FAST estimator of the SI

sdosed and the corrected one respectively, and

S e (50)

Q<=PQ#0

closed
Jglosed

5. An efficient strategy to estimate both first- and second-
order sensitivity indices

Throughout this section, we develop a strategy using RBD-
FAST to get all the bias-corrected estimates of the first- and

Table 1

second-order SI of a model in which we assume that the SI over a
certain order ¢ are negligible. In this case, we can get the first-
order and second-order indices by applying Egs. (46) and (47).

However, contrarily to the RBD method in which all the main
effects of any model can be estimated using only one experi-
mental design, the computation of all the first-order and second-
order indices using RBD-FAST requires a number of sample sets
increasing with the number of factors p. Through an example,
Mara [20] observes that five sample sets are necessary to estimate
all the 15 second-order SI - and naturally the first-order ones - of
a six-dimensional model. In fact, in the case of six input factors,
the number of experimental designs can be restricted to 4. More
generally, we establish that the required number of experimental
designs is equal to

1+rpinq for p >4,

q prime

1 forp<3, (51)

where p is the number of input factors. Low-dimensional models
- p <3 - can be treated using FAST method with only one design
of experiments; in the other cases we implement a strategy based
on elementary combinatory considerations.

It has to be noted that, in Mara’s paper [20], input variables are
divided into groups of two factors, while our configurations can
contain subgroups of more than two factors. Thus, the constraints
on the sample size that arise from FAST - see Eqs. (14) and (15) -
are more restrictive in our approach. Nevertheless, as we can
observe in Table 1, at the same computational cost, our strategy
provides second-order SI estimates with smaller variance.

5.1. Designs of experiments in the case p = q*> with q prime

In this particular case, the different configurations of the
designs of experiments required to estimate all the first-order
and second-order SI are quite natural. First, we divide the set of
input variables {Xj, ... ,X,} into q groups of q factors; for example,
in the case p=9, we can have

Configuration 0: X4X1X5 X7X9X2 X3X8X6. (52)
0 0 0
Gy G, Gs

Following RBD-FAST approach, each group receives a set of free of
interferences frequencies and is randomly permuted. This allows
to estimate the second-order indices Si4, S1s, Sas, S27, S29, S79, S36,
S3g and Sgg, and all the first-order terms.

We then obtain the other configurations applying the follow-
ing rules:

(R1) each of the new configurations is a partition of the input
variables into q groups of q factors,

(R2) each group in the new configurations is filled with one factor
of each original group (GY); _ 1.

(R3) if a set of two distinct variables {X;,X;} is already contained
in a group G¥, then we are not allowed to define a group G.,,

Estimation of the first- and second-order SI using the RBD-FAST method with sample size 4001 with Mara’s strategy (MS) and the proposed efficient strategy (ES). We give,
together with the theoretical value of the SI, the empirical means and variances of a sample of 200 estimator replicates.

Si Sa S7 Sia S17 Sa7 S12 Sas S78
Theoretical value 0.1288 0.0573 0 0.0191 0 0 0.0429 0.0085 0
Mean ES 0.1286 0.0573 0.0000 0.0187 —0.0002 —0.0001 0.0423 0.0083 —0.0001
Variance ES ( x 107°) 1.1 0.8 0.1 2.5 0.9 1.0 1.9 1.9 1.1
Mean MS 0.1289 0.0568 0.0000 0.0189 —0.0004 —0.0002 0.0423 0.0078 0.0001
Variance MS ( x 107°) 1.3 0.8 0.1 10.0 6.4 6.0 9.9 9 6




210 J.-Y. Tissot, C. Prieur / Reliability Engineering and System Safety 107 (2012) 205-213

with [ # k and m # n, in a next configuration containing both
X; and X;.

For instance, in the case p=9, it is only possible to create three
new configurations:

XoX4Xg X7X5Xs X3X2X1,

e N e N

1 1 1
Gl GZ GB

configuration 1 :

Corlfiguration 2 XeX1Xg9 X3X7X4 X2XgX5,
—_——— —— ——

Gi G G

configuration 3: X7X]X8 X5X3X9 X5X2X4, (53)
3 3 3
Gl GZ 63

here it is easy to notice that these four configurations 0, 1, 2 and
3 allow to compute one estimate of all the second-order SI and
four estimates of all the first-order terms.

More generally, we have the following proposition:

Proposition 1. In the case p=q? with q prime, there exists an
efficient strategy using q+1 designs of experiments and allowing to
compute q+1 estimates of all the first-order SI and one estimate of
all the second-order terms.

Proof. See Appendix B.

5.2. Experimental designs for any p

In the general case, we first define

.
q"=ming (54)
and

p*=(q"> (55)

Following the strategy presented in the previous section, we can
create g+1 designs of experiments with p* factors, Xi,....Xp,...,
Xp+. We then delete variables X, 1,..., Xp+ in all configurations.
For example, considering an eight-dimensional model, we get
g*=3 and p*=9, and we can use the designs of experiments
presented in Eqs. (52) and (53), and deleting the factor X, we get

X4X1X5 X7X5 X3X3Xs,
——— N N —

0 0 0
Gl GZ G3

configuration O :

configuratiorl 1: X4X3 X7X5X6 X3X2X1,
—— ——— N———

Gl G} G}

configuration 2 :  XeX; X3X7X4 X2XgXs,
N N——— N——

G G G

configuration 3 : X;X1Xg Xs5X3 XgX2X4. (56)
3 3 3
Gl G2 G3

Hence, for any p, we have an economical strategy for which the
number of experimental designs satisfies Eq. (51).

Remark 7. Elaborating economical strategies is also of major
importance for the Sobol’ method in which the curse of dimen-
sionality is clearly problematic. In particular, one can cite the work
of Saltelli [24] who provides an economical way to estimate all the
first-order, second-order and total SI using the Sobol’ method.

6. Numerical tests

The accuracy of the proposed bias correction method is tested
on the g-function introduced by Sobol’ (see e.g. [25]). Considering

uniformly distributed independent input variables (X;);_q_, on
the unit hypercube, this function is defined as
p
fXa, . Xp) =[] &, (57)
i=1
where g;(X;) is given by
N ‘4X,—2‘ +a;
giX) = T itq (58)

We consider a six-dimensional g-function where (a;) =(0,0,0,
0.5,0.5,0,5), so that the three first parameters are important, the
others are less important and interactions are quite important.
We then add three dummy factors X7, Xg and Xg that do not play
any role in the model.

The bias correction method and the efficient strategy are
tested on this nine-dimensional model.

6.1. Test on RBD

The correction method is tested using increasing sample sizes,
N=501 and N=2001 (see Figs. 2 and 3). In both cases, we
estimate all the first-order SI with the basic RBD method and
with the corrected one. The experiment is replicated 200 times
using different random permutations.

We observe that the corrected boxplots are centered on the
analytical values whatever the sample size. On the contrary, in the
absence of correction method, the estimates are considerably biased,
even for a large sample size. For a low sample size, we can notice
that the bias correction is of great importance because a factor
without any effect on the output can appear as a non-negligible one
using the basic RBD method (see B;, Bg and By in Fig. 2).

6.2. Tests on RBD-FAST

6.2.1. Computations using the efficient strategy

In this section, we test the bias correction method on RBD-
FAST. Applying the efficient strategy using RBD-FAST, we estimate
all the first- and second-order SI using only four experimental
designs - those presented in Egs. (52) and (53) — with sample size
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Fig. 2. Estimation of the first-order SI using RBD. We compare, for a fixed sample
size N=>501, the basic estimator (B1-B9) with the bias-corrected one (C1-C9). In
each column, we mark the theoretical SI with a blue asterisk and plot several
summaries of a sample of 200 estimator replicates: the red central mark is the
median; the box has its lower and upper edges at the 25th percentile g and the
75th percentile Q, respectively; the whiskers extend between q—1.5(Q—¢q) and
Q+1.5(Q—q); the red crosses are outliers. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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size N=2001, the basic estimator (B1-B9) with the bias-corrected one (C1-C9). In
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color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 4. Estimation of the first-order SI using RBD-FAST. We compare, for a fixed
sample size N=4001, the basic estimator (B1-B9) with the bias-corrected one
(C1-C9). In each column, we mark the theoretical SI with a blue asterisk and plot
several summaries of a sample of 200 estimator replicates: the red central mark is
the median; the box has its lower and upper edges at the 25th percentile g and the
75th percentile Q, respectively; the whiskers extend between q—1.5(Q—q) and
Q+1.5(Q—q); the red crosses are outliers. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)

4001. Following Remark 5, we neglect the third-order effects -
their contribution in the variance is theoretically lower than 10%
- so we apply Egs. (46) and (47) with 6 = 2.

Here, designs are constructed using different random permuta-
tions and the set of frequencies free of interferences is {w1,w;,w3} =
{177,186,193}. We show in Figs. 4-6 boxplots of 200 replicates; all
first-order SI are shown in Fig. 4, and a representative subset of the
second-order Sl is shown in Figs. 5 and 6. As in the previous test, the
corrected indices are centered on their respective theoretical value;
but some differences exist between main effects and interaction
estimations. On the one hand, first-order terms are accurately
evaluated, and their bias, in the absence of correction, are rather
low; on the other hand, interaction estimates suffer from a more
important variance and a larger bias in the absence of correction.

Two main reasons justify the difference between the variances.
Firstly the first-order terms are evaluated thanks to four estimates
per indices while the second-order ones are computed with only
one estimate, and secondly the complexity of SI grows with the
order. In terms of bias, the lower performance of the interaction
estimations without correction is essentially due to the larger
number of frequencies taken into account to evaluate the second-
order indices. Indeed, considering Eq. (46), we can notice that the
amplitude of the bias
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Fig. 5. Estimation of the second-order SI using RBD-FAST. We compare, for a fixed
sample size N=4001, the basic estimator (Bij) with the bias-corrected one (Cij). In
each column, we mark the theoretical SI with a blue asterisk and plot several
summaries of a sample of 200 estimator replicates: the red central mark is the
median; the box has its lower and upper edges at the 25th percentile g and the
75th percentile Q, respectively; the whiskers extend between g—1.5(Q—¢q) and
Q+1.5(Q—q); the red crosses are outliers. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 6. Estimation of the second-order SI using RBD-FAST. We compare, for a fixed
sample size N=4001, the basic estimator (Bij) with the bias-corrected one (Cij). In
each column, we mark the theoretical SI with a blue asterisk and plot several
summaries of a sample of 200 estimator replicates: the red central mark is the
median; the box has its lower and upper edges at the 25th percentile g and the
75th percentile Q, respectively; the whiskers extend between q—1.5(Q—q) and
Q+1.5(Q—q); the red crosses are outliers. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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is proportional to Ap =n(P)/N. In this test, we have n(P)=2N; =
2 x 10 =20 for the first-order SI, and n(P) =2N,(N;—1)=2 x 7 x
(7—1) =84 for the second-order SI. Note that the frequency set
{177,186,193} satisfies the criterion stated in Egs. (19) and (20)
with parameters N; =10, N, =7 and N5 =0.

6.2.2. Comparison with Mara’s approach

We now estimate all the first- and second-order SI using the
strategy described in Mara [20]. With such an approach, input
variables are divided into four groups of two factors and one
single term. Hence, nine experimental designs have to be
employed. To keep the same computational cost as for the
previous experiment in Section 6.2.1, sample size is 1791 and
we use the set of frequencies {wq,m,}={79,83}. Note that this
frequency set satisfies the criterion stated in Egs. (19) and (20)
with parameters N; = 10 and N, = 7. The experiment is replicated
200 times using different random permutations, and results
(empirical mean and variance for each strategy) are reported in
Table 1. On the one hand the accuracy of first-order SI estimates is
the same, and on the other hand we observe that the efficient
strategy provides second-order indices with lower variance. We
conclude that the choice of strategy seems to be important in
terms of variance reduction.

7. Conclusion

In this paper we presented a bias correction method for the
estimation of SI of any order by both RBD and RBD-FAST. In
particular, as we can notice through the numerical tests, this
technique successfully avoids the over-estimation of the first-
order and second-order indices, for any sample size.

We also introduced a strategy which, combined with the bias
correction method, provides an efficient way to estimate all the
first-order and second-order indices using RBD-FAST. In particu-
lar, this kind of approach allows to get a good overview of the
sensitivity of a model output at a low cost.

Finally this efficient strategy introduces the question of var-
iance reduction techniques (see Section 6.2.2), and a further work
is to improve RBD and RBD-FAST sampling methods. In particular,
optimization algorithms commonly used for Latin hypercube
sampling could be adapted for RBD experimental designs which
are, as we have noticed in Section 3, very close to Latin hypercube
designs.
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Appendix A. Details on formula (45)

We denote by (P;); _; _, the nonempty subsets of {my,...,mg}
where n is given by

d d 4
n:;;@:z 1,

(A1)

and, to simplify the notations, we denote by /; the coefficients Ap,.
Applying Eq. (42) to each of the P;, we get the linear system

~ o
SFI 1-4 .y e e —M /P\l
sz —}.2 1—}.2 —12 s —12 Slc;vz
S;n: *;Ln—l 1*/111—1 */111—1 SE’:
5 R R .V
A
21
Ao
+ ) (A2)
;Ln—l
An

The determinant 4 of the matrix of the system - denoted A - is
easy to compute. Subtracting the first column to all other ones,
we get

1-2¢ =1 -+ . -1
-4 1 0 ... 0
A=]| 0o - : : (A3)
: s o0
—n 0 .. 0 1
and, using Laplace expansion
A=1-21—23 - —In. (A4
In practice, we fix N so that
n
> " card(P;) < N. (A.5)
i=1
Hence, with the definition in Eq. (43), we have
n
d i<l (A.6)

i=1

This implies that 4 is positive; in particular A is invertible.
We get A~! using the formula based on the adjugate matrix

A" ="adjA
A = i) A7)
We easily obtain
A+ A4 A2 s -1 An
)»] A+ ),2 ) .
adjA) = K - : (A.8)
A+ ),n_] }.n
)\.] /12 cee /ln,1 A+
Finally we invert the linear system (A.2). It comes
S|4 a4 4 ||%] |3
o } S | |
5 4 4 1+4)\ s, 4
(A9)

and we conclude that Eq. (45) holds.

Appendix B. Proof of Proposition 1

Let p = q? with q prime. It is obvious that if there exists g+ 1
designs of experiments satisfying the rules established in Section
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5.1, then these configurations allow to compute g+ 1 estimates of
all first-order SI and one estimate of all second-order terms. So, to
show that an efficient strategy exists, it is sufficient to prove the
existence of such configurations under the rules (R1), (R2) and
(R3) of Section 5.1. We give a constructive proof.

We begin by renaming the factors (X;);__p, and defining an
initial configuration

Xi-o Xy Xy Xg Xy X, (B.1)

—— —— S——

a G Gs

q

configuration O :

where X{ =X(i_1yg+j- We then obtain the g other experimental
designs by considering fori=1,...,q

. Lo 1a 1 12 12 ! 5
configuration i: X7V ... xgi D XTI xT@ L xT@ X7 @,

G} G, Gy
(B.2)

where for all i and j between 1 and q, a{f is a permutation on the
set {1, ...,q}. These configurations obviously satisfy rules (R1) and
(R2) since each group (G})j:hq is filled with one factor of each
original group (ij)k —1.q> but (R3) is not always verified. However
we can observe that, letting c be a cyclic permutation of order g,
the permutations

ol=cl=coco-..oc (B.3)
—_———
ij times
allow to satisfy rule (R3). Indeed, following the formalism of Eq.
(B.2), rule (R3) reads as for all i, 7, k, kK, j; and j, between 1 and q,
with i<i and j; #J,, either the factor from GJ-O1 inside Gi - i.e.
. ‘ e
X;?l(k) - is different from the factor from Gﬁ inside Gy - i.e. X: @©

. 2
- or the factor from Gjo2 inside G} - i.e. Xoj" ®

s is different from the

0 - ir . 2K .
factor from G, inside Gy - ie. X;" " . That is to say
ol (k) # o) (k)
v1 <i,i kK ji.jo <q.i<i\j; #Jos or ‘ (B.4)
o2 (k) # o (K).
So, assuming Eq. (B.3), let us prove that
clh(ky  cth (k)
v1 <i,i kK ji.jo <q.i<i\j; #Jos or (B.5)
cliz (k) # cli2 ().
Suppose, by contradiction, that
civky=ch (k) and c2(k) =2 (k) (B.6)
for some (i,i',k,k',j;,j») with i #i" and j; #J,. It follows that
ci=01-32) () = k. (B.7)
Then, c being a cyclic permutation of order q with g prime and i

/

being different from i, we deduce that c@-") is a cyclic

permutation of order q. Hence, j;—j, = gr for a certain integer r.
But, assuming 1 <j, j, <gq, we conclude that r=0 and j; =j,, a
contradiction to our assumption j; # j,. The conclusion follows.
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