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This paper deals with the random balance design method (RBD) and its hybrid approach, RBD-FAST.

Both these global sensitivity analysis methods originate from Fourier amplitude sensitivity test (FAST)

and consequently face the main problems inherent to discrete harmonic analysis. We present here a

general way to correct a bias which occurs when estimating sensitivity indices (SIs) of any order –

except total SI of single factor or group of factors – by the random balance design method (RBD) and its

hybrid version, RBD-FAST. In the RBD case, this positive bias has been recently identified in a paper by

Xu and Gertner [1]. Following their work, we propose a bias correction method for first-order SIs

estimates in RBD. We then extend the correction method to the SIs of any order in RBD-FAST. At last, we

suggest an efficient strategy to estimate all the first- and second-order SIs using RBD-FAST.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Global sensitivity analysis of model output consists in quanti-
fying the respective importance of input factors over their entire
range of variation. Many techniques have been developed in this
field (see [2,3] for a review), this includes for example screening
methods [4], density-based methods [5,6] and also derivative-
based methods [7,8]. But the most popular are the variance-based
methods that rely on ANOVA decomposition [9–11].

ANOVA decomposition and sensitivity indices. Let X¼ ðX1, . . . ,XpÞ

be a random vector and Y ¼ f ðXÞAR, where f is a square-integr-
able function. Under the assumption that the components of X are
independent, the variance V of the model output Y can be
decomposed as

V ¼
Xp

k ¼ 1

X
1r i1 o ���o ik rp

Vi1 ...ik , ð1Þ

where

Vi1 ...ik ¼
X

JD fi1 ,...,ikg

ð�1Þk�cardðJÞ VarðEðY9Xj,jA JÞÞ, ð2Þ

where Varð�Þ and Eð�9�Þ denote variance and conditional expecta-
tion, respectively. Thus, if V a0 (i.e. Y is not almost surely
constant), dividing both sides of (1) by V, yields a positive and
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normalized decomposition

1¼
Xp

k ¼ 1

X
1r i1 o ���o ik rp

Si1 ...ik , ð3Þ

where

Si1 ...ik ¼
Vi1 ...ik

V
, 1r i1o � � �o ikrp ð4Þ

are the so-called kth-order SIs—or Sobol’ indices.
In the case of an additive model – i.e. f ðX1, . . . ,XpÞ ¼Pp

k ¼ 1 f kðXkÞ – all terms but the first-order SI are zero and we
obtain a full decomposition with only S1, . . . ,Sp. On the contrary, if
f is a non-additive function, it is necessary to evaluate higher-
order terms to point out which interactions are significant. In
practice, the first- and second-order SIs generally provide a good
overview of the global variations of a model output.

FAST and its derived methods. Different methods have been
developed to estimate variance-based SIs, the FAST method,
introduced in the 1970s, is one of the earliest. The three
introduction papers [12–14] describe how to compute main
effects – i.e. first-order sensitivity indices – exploiting Weyl’s
ergodic theorem [15]. Then, in a review article [16], the authors
precise the underlying theory considering multiple Fourier series,
and suggest a decomposition of variance (see Eq. (2.29) in [16])
which allows to consider higher-order SIs. But, in practice, many
sources of error occur and it is generally impossible to get
accurate estimates at low computational cost. As a consequence
FAST has only been applied to estimate first-order and total SIs in
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small dimension (see the EFAST method due to Saltelli et al. [17]
for total SIs).

The RBD and Hybrid FAST-RBD (HFR) methods, proposed in
2006 by Tarantola et al. [18], partially overcome the inherent
drawbacks of FAST using a new sampling technique based on
Satterthwaite’s random balance designs [19]. These methods have
been introduced to estimate first-order SIs, and as Mara [20]
notices, it is also possible to estimate SIs of any order or closed
and total sensitivity indices, using the HFR method (renamed
RBD-FAST).

Recently Plischke [21] derived another FAST-like method,
named Effective Algorithm for computing global Sensitivity
Indices (EASI), which estimates sensitivity indices with any input
sample while FAST, RBD and RBD-FAST use specific experimental
designs.

In Section 2, we briefly recall the FAST method and discuss the
different sources of error that affect the accuracy of SI estimates.
In Section 3, we present the specific problem of interferences in
RBD which leads to the positive bias of the first-order SIs and we
propose a bias correction method. In Section 4, we extend this
technique to the sensitivity indices of any order in RBD-FAST, and
in Section 5, we describe an efficient strategy to estimate all the
first and second-order SI using RBD-FAST. Numerical examples
are presented in Section 6 to illustrate the accuracy of the
proposed bias correction method. Conclusions and ideas for a
future work are summarized in Section 7.
2. Sources of error in the FAST method

2.1. Description of the FAST method

The FAST method is based on a specific experimental design –
the so-called search curve – which allows to use discrete Fourier
transform. The experimental design ðxkÞk ¼ 1...N is such that

xk
i ¼ GiðsinðoiskþjiÞÞ, i¼ 1, . . . ,p, k¼ 1, . . . ,N, ð5Þ

where the oi’s are integer frequencies – free of interferences up to
a certain order (see Section 2.2) – the Gi’s are functions to be
settled so as to impose probability density functions on the input
variables Xi, ji are random phase-shifts and ðskÞk ¼ 1...N is defined
as

sk ¼
2pðk�1Þ

N
: ð6Þ

In particular, to uniformly sample the marginal distributions over
½0;1�, one shall use (see for example [17])

Gið�Þ ¼
1

p
arcsinð�Þþ

1

2
: ð7Þ

The Fourier spectrum of the discrete signal ðf ðxj
1, . . . ,xj

pÞÞj ¼ 1...N can
be decomposed with respect to the frequencies o1, . . . ,op, and
the following estimators can be defined

bV ¼ X
1r 9n9rN=2

9ĉn9
2
, ð8Þ

cVi ¼
X

1r 9k9rN1

9ĉkoi
92

, ð9Þ

cVij ¼
X

2r 9k9þ 9l9rN2

9ĉkoiþ loj
92

, ð10Þ

and so on; where N1 is the highest harmonic considered as non-
negligible, N2 is the order over which the linear combinations of
oi and oj are considered as negligible, and

ĉn ¼
1

N

XN

j ¼ 1

f ðxj
1, . . . ,xj

pÞe
�in2pðj�1Þ=N , �

N

2
rnr

N

2
ð11Þ

is the n-th complex discrete Fourier coefficient. Finally, dividing
(9) (resp. (10)) by (8), we get the estimator of a first-order (resp.
second-order) SI:

bSi ¼

P
1r 9k9rN1

9ĉkoi
92P

1r 9n9rN=29ĉn9
2

, ð12Þ

cSij ¼

P
2r 9k9þ 9l9rN2

9ĉkoiþ loj
92P

1r 9n9rN=29ĉn9
2

: ð13Þ

The accuracy of these estimates naturally depends on the sample
size and we can observe an empirical convergence to the
theoretical values as N tends to þ1. But the dependence is
intricate; in addition to the truncation error, we distinguish two
main sources of error.

2.2. Interferences

Whenever a linear combination of the frequencies o1, . . . ,op is
equal to zero, some parts of variance could be attributed by error
to other ones in the decomposition of the Fourier spectrum. For
example, if �2o1þo2 ¼ 0, the discrete Fourier coefficient
ĉ2o1
¼ ĉo2

contains information from both X1 and X2, and should
not be totally attributed to cS1 and cS2 . These interferences can
sometimes cause a bias, and to alleviate their effect, we adopt the
criterion proposed by Schaibly and Shuler [13] to choose fre-
quency sets free of interferences up to a certain order MXp

i ¼ 1

aioia0 for
Xp

i ¼ 1

9ai9rMþ1: ð14Þ

2.3. Aliasing

Only linear combinations such that �N=2oo¼
Pp

i ¼ 1 aioio
N=2 are unambiguously represented by the discrete sampled signal. If
o is out of this range, its spectral component is falsely attributed to
another frequency inside the Fourier spectrum. To avoid this aliasing
phenomenon, which can lead to positively biased estimators, it is
necessary to satisfy the Nyquist–Shannon theorem, i.e. to impose that
the sampling rate is large enough. As a consequence, the sample size
is bounded from below as follows:

NZ2M max
1r irp

oi, ð15Þ

where M is defined in the previous paragraph. Practitioners generally
set

N1 ¼N2 ¼ � � � ¼Nd ¼M, ð16Þ

but this constraint is not necessary, and the criterion stated in (14)
and (15) can be formulated in a more general way. Indeed, for all
1rqrp, consider NqANn, and for all 1r i1o � � �o iqrp, define

Ai1 ...iq ¼ ða1, . . . ,apÞAZp98i=2fi1, . . . ,iqg,ai ¼ 0 and
X

1rmrq

9aim 9rNq

( )
ð17Þ

and

A¼
[p

q ¼ 1

[
1r i1 o ���o iq rp

Ai1 ...iq : ð18Þ
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Hence we propose to replace (14) and (15) byXp

i ¼ 1

aioia0 for all ða1, . . . ,apÞAA ð19Þ

and

NZ2 max
ða1 ,...,apÞAA

Xp

i ¼ 1

aioi, ð20Þ

respectively. Note that if (16) is satisfied, (19) and (20) are equivalent
to the classic criterion stated in (14) and (15).
3. Random balance design method

As we noted in the previous section, using a distinct frequency
per input factor in the FAST method imposes restrictive con-
straints on the sample size. To overcome this drawback, an
alternative sampling method is employed in RBD.

3.1. Sampling method

In contrary to FAST, in the RBD method, all the oi are equal to
a unique frequency o and input variables are distinguished by
taking random permutations of the coordinates of the sample
points. Let s1, . . . ,sp denote random permutations on the set
f1, . . . ,Ng, the experimental design ðxkÞk ¼ 1...N is such that

xk
i ¼ GiðsinðossiðkÞÞÞ, 8i¼ 1, . . . ,p and 8k¼ 1, . . . ,N: ð21Þ

One shall choose an odd integer N to get a good space-filling
design. In this case, RBD technique is very close to Latin hyper-
cube sampling introduced in 1979 (see [22]); the only difference
is that the RBD design points are located at the center of the cells
(see Fig. 1).

3.2. Estimator

RBD sampling method can be used to estimate first-order SI.
The estimator of the total variance is defined as in FAST and the
part of variance due to the factor Xi is estimated bycVi ¼

X
1r 9k9rN1

9ĉsi

ko9
2

ð22Þ

with

ĉ
si

ko ¼
1

N

XN

j ¼ 1

f ðx
s�1

i
ðjÞ

1 , . . . ,x
s�1

i
ðjÞ

p Þe�iko2pðj�1Þ=N , ð23Þ
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Fig. 1. Comparison between Latin hypercube and RBD samples
where s�1
i is the inverse permutation of si. Indeed, considering a

fixed i, the design points ðx
s�1

i
ðjÞ

1 , . . . ,x
s�1

i
ðjÞ

p Þj ¼ 1...N are such that the
ith coordinate is sampled with respect to the frequency o and the
other ones are sampled in a random way because

x
s�1

i
ðjÞ

k ¼ Gkðsinðosskðs�1
i
ðjÞÞÞÞ

¼
GkðsinðosjÞÞ if k¼ i,

Gkðsinðossi
k
ðjÞÞÞ if ka i,

(
ð24Þ

where si
k ¼ skJs�1

i is almost surely a non-trivial permutation.
Therefore, in the Fourier spectrum of the signal

ðf ðx
s�1

i
ðjÞ

1 , . . . ,x
s�1

i
ðjÞ

p ÞÞj ¼ 1...N , ð25Þ

the harmonics of o are attributed to the partial variance of Xi.
Thus, using FAST estimator, we get Eqs. (22) and (23).

Remark 1. The choice of the frequency o seems to be of
secondary importance. However, to avoid aliasing, the most
efficient value is the smallest one, typically o¼ 1. In this case,
the aliasing phenomenon is negligible and consequently, there is
no more restriction on the sample size as in Eq. (15).

3.3. Bias

As we explained in the last section, the RBD estimator
is so defined because the harmonics of o in the signal
ðf ðx

s�1
i
ðjÞ

1 , . . . ,x
s�1

i
ðjÞ

p ÞÞj ¼ 1...N are supposed to be only related to the
part of variance Vi due to Xi. But it is essential to notice that,
since the factors ðXkÞka i are randomly sampled, the remaining
part of variance – denoted V�i – appears in the signal ðf ðx

s�1
i
ðjÞ

1 , . . . ,
x
s�1

i
ðjÞ

p ÞÞj ¼ 1...N as a random noise. Therefore, a random fraction of
each harmonic of o is related to V�i and is falsely attributed to Vi.
Xu and Gertner [1] quantified this interference between the
harmonics of o and the random noise, showing that for any ĉ

si

ko
we have

Eð9ĉsi

ko9
2
Þ ¼ 9csi

ko9
2
þ

V�i

N
, ð26Þ

where csi

ko denotes the theoretical unbiased kth harmonic of o.
Thus, following Eq. (22), we define the bias-corrected estimator of
Vi as

cVc
i ¼

cVi�
2N1

N
cV� i, ð27Þ

where cV� i is an estimator of V�i defined, assuming the bias
correction, as

cV� i ¼
bV�cVc

i : ð28Þ
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Hence

cVc
i ¼

cVi�
2N1

N
ðbV�cVc

i Þ; ð29Þ

and dividing both sides of the equality by bV , we obtain

bSc
i ¼

bSi�
2N1

N
ð1� bSc

i Þ, ð30Þ

where bSi and bSc
i are the RBD estimator of the first-order sensitivity

index and the corrected one, respectively. Finally, setting
l¼ 2N1=N, we get the explicit formula

bSc
i ¼

bSi�
l

1�l
ð1�bSi Þ: ð31Þ

Remark 2. It is important to observe that the larger N and Si, the
lower the bias.

Remark 3. In his paper, Plischke [21] suggests to apply exactly
the same bias correction to the EASI estimates (see Eq. (7) in [21]).
His approach is based on a bias correction method for correlation
ratios due to Kelley [23].

4. Hybrid approach: RBD-FAST

The underlying idea in RBD-FAST is to combine both RBD and
FAST sampling approaches. Therefore, this new method is natu-
rally faced with the classical drawbacks of FAST, but in a lesser
extent. The main interest of the hybrid approach is that estima-
tion of higher-order SI is possible.

4.1. Sampling method

For this purpose, the p input variables are divided into groups
of approximatively equal cardinal. Then each group is assigned a
distinct random permutation and each factor of the group a
distinct frequency chosen from a frequency set assumed free of
interferences up to a given order (see Section 2.2). For example,
we can have the following configurations:

6 factors : X1 X2 X3 X4 X5 X6

o1o2o3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s1

o1o2o3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s2

,

6 factors : X1 X2 X3 X4 X5 X6

o1o2|fflfflffl{zfflfflffl}
s1

o1o2|fflfflffl{zfflfflffl}
s2

o1o2|fflfflffl{zfflfflffl}
s3

,

7 factors : X1 X2 X3 X4 X5 X6 X7

o1o2o3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s1

o1o2|fflfflffl{zfflfflffl}
s2

o1o2|fflfflffl{zfflfflffl}
s3

:

Remark 4. Tarantola et al. [18] and Mara [20] present RBD-FAST
(or HFR) in another way: the p input variables are partitioned in
the same way but the permutations are applied within the groups
and a different frequency is associated to each group. Actually, the
methods are strictly equivalent; these just are two different
points of view.

4.2. Estimators

This hybrid sampling method allows to define the estimator of
SI of any order. In particular, considering two factors inside the
mth group associated with the frequencies oi and oj respectively,
we can define the part of variance of their interaction ascVij ¼

X
2r 9k9þ 9l9rN2

9csm

koiþ loj
92

, ð32Þ
where N2 is the value over which the linear combinations of oi

and oj are considered as negligible and where

csm

koiþ loj
¼

1

N

XN

n ¼ 1

f ðx
s�1

m ðnÞ
1 , . . . ,x

s�1
m ðnÞ

p Þe�iðkoiþ lojÞ2pðn�1Þ=N : ð33Þ

In the same way, considering a factor inside the mth group
associated with the frequency oi, we can define its part of
variance ascVi ¼

X
1r 9k9rN1

9csm

koi
92

, ð34Þ

where N1 is the highest harmonic considered as non-negligible
and with

csm

koi
¼

1

N

XN

n ¼ 1

f ðx
s�1

m ðnÞ
1 , . . . ,x

s�1
m ðnÞ

p Þe�ikoi2pðn�1Þ=N : ð35Þ

Indeed, considering the sample points ðx
s�1

m ðjÞ
1 , . . . ,x

s�1
m ðjÞ

p Þj ¼ 1...N

where m is fixed, for 1rkrp, we have
(i)
 if Xk is associated with the couple ðoi,smÞ then

x
s�1

m ðjÞ
k ¼ Gkðsinðoissmðs�1

m ðjÞÞ
ÞÞ ¼ GkðsinðoisjÞÞ, ð36Þ
(ii)
 if Xk is associated with a couple ðoi,snÞ, for nam, then

x
s�1

m ðjÞ
k ¼ Gkðsinðoissnðs�1

m ðjÞÞ
ÞÞ, ð37Þ
where snJs�1
m is almost surely a non-trivial permutation. There-

fore, all input variables outside the group associated with sm are
randomly sampled, and the other ones are sampled with respect
to their frequencies. Applying FAST’s estimator, Eqs. (32)–(35)
follow.

4.3. Bias

The phenomenon leading to positive biases described for the
RBD method occurs in the same way for RBD-FAST. Therefore
parts of variance can be corrected with an analogous technique.

Let Xm1
,y, Xmd

be the d input factors inside the mth group, and
P be a nonempty subset of fm1, . . . ,mdg. We denote VP the part of
variance due to the interaction between the input variables
ðXiÞiAP (e.g. if P¼ fig, VP is simply Vi, and if P¼ fi,jg, VP is Vij). LetcVP be the RBD-FAST classical estimator of VP, previously described
in Eqs. (32) and (34) for cardðPÞ ¼ 1 and 2. Following RBD bias
correction, we first define the estimator of the positive bias BP as

cBP ¼
nðPÞ

N
dV�P ð38Þ

and the corrected estimator of VP ascVc
P ¼

cVP�
cBP , ð39Þ

where n(P) is the number of Fourier coefficients taken into
account to estimate VP. dV�P is an estimate of the part of variance
which is not due to any subset of factors contained in fm1, . . . ,mdg

defined, assuming the bias correction, as

dV�P ¼
bV� X

Q D fm1 ,...,md g

Q a |

cVc
Q : ð40Þ

Hence

cVc
P ¼

cVP�
nðPÞ

N
bV� X

Q D fm1 ,...,md g

Q a |

cVc
Q

0@ 1A, ð41Þ
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and dividing both sides of the equality by bV , we get

cSc
P ¼

cSP�
nðPÞ

N
1�

X
Q D fm1 ,...,md g

Q a |

cSc
Q

0@ 1A, ð42Þ

where cSP and cSc
P are the RBD-FAST estimator of the SI SP and the

corrected one, respectively. Then setting

lQ ¼
nðQ Þ

N
for any nonempty subset Q Afm1, . . . ,mdg ð43Þ

and

l ¼
X

Q D fm1 ,...,md g

Q a |

lQ , ð44Þ

we conclude with the explicit formula

cSc
P ¼

cSP�
lP

1�l
1�

X
Q D fm1 ,...,md g

Q a |

cSQ

0@ 1A: ð45Þ

(see details in Appendix A).

Remark 5. This bias correction formula requires the knowledge of
the biased estimators cSQ of any order relative to the input factors
ðXiÞiAP . Unfortunately, the estimation of the terms over a certain
order is quite difficult; so in practice, it is necessary to neglect SI
over a certain degree d and to consider the following bias correction:

cSc
P ¼

cSP�
lP

1�l
1�

X
Q D fm1 ,...,md g

Q a |,cardðQÞr d

cSQ

0@ 1A, ð46Þ

where

l ¼
X

Q D fm1 ,...,md g

Q a |,cardðQÞr d

lQ : ð47Þ

Remark 6. An analogous formula for closed SI can be deduced
from (45). Keeping the same notations as previously, such indices
are defined as

Sclosed
P ¼

X
Q DP,Q a|

SQ ð48Þ

and we have

bSclosed,c

P ¼ bSclosed

P �
lclosed

P

1�l
1�

X
Q D fm1 ,...,md g

Q a |

cSQ

0@ 1A, ð49Þ

where bSclosed

P and bSclosed,c

P are the RBD-FAST estimator of the SI
Sclosed

P and the corrected one respectively, and

lclosed
P ¼

X
Q DP,Q a|

lQ : ð50Þ

5. An efficient strategy to estimate both first- and second-
order sensitivity indices

Throughout this section, we develop a strategy using RBD-
FAST to get all the bias-corrected estimates of the first- and
Table 1
Estimation of the first- and second-order SI using the RBD-FAST method with sample siz

together with the theoretical value of the SI, the empirical means and variances of a s

S1 S4 S7 S14

Theoretical value 0.1288 0.0573 0 0.0191

Mean ES 0.1286 0.0573 0.0000 0.0187

Variance ES (�10�5) 1.1 0.8 0.1 2.5

Mean MS 0.1289 0.0568 0.0000 0.0189

Variance MS (�10�5) 1.3 0.8 0.1 10.0
second-order SI of a model in which we assume that the SI over a
certain order d are negligible. In this case, we can get the first-
order and second-order indices by applying Eqs. (46) and (47).

However, contrarily to the RBD method in which all the main
effects of any model can be estimated using only one experi-
mental design, the computation of all the first-order and second-
order indices using RBD-FAST requires a number of sample sets
increasing with the number of factors p. Through an example,
Mara [20] observes that five sample sets are necessary to estimate
all the 15 second-order SI – and naturally the first-order ones – of
a six-dimensional model. In fact, in the case of six input factors,
the number of experimental designs can be restricted to 4. More
generally, we establish that the required number of experimental
designs is equal to

1þminffiffi
p
p

r q
q prime

q for pZ4,

1 for pr3, ð51Þ

where p is the number of input factors. Low-dimensional models
– pr3 – can be treated using FAST method with only one design
of experiments; in the other cases we implement a strategy based
on elementary combinatory considerations.

It has to be noted that, in Mara’s paper [20], input variables are
divided into groups of two factors, while our configurations can
contain subgroups of more than two factors. Thus, the constraints
on the sample size that arise from FAST – see Eqs. (14) and (15) –
are more restrictive in our approach. Nevertheless, as we can
observe in Table 1, at the same computational cost, our strategy
provides second-order SI estimates with smaller variance.

5.1. Designs of experiments in the case p¼ q2 with q prime

In this particular case, the different configurations of the
designs of experiments required to estimate all the first-order
and second-order SI are quite natural. First, we divide the set of
input variables fX1, . . . ,Xpg into q groups of q factors; for example,
in the case p¼9, we can have

configuration 0 : X4X1X5|fflfflfflffl{zfflfflfflffl}
G0

1

X7X9X2|fflfflfflffl{zfflfflfflffl}
G0

2

X3X8X6|fflfflfflffl{zfflfflfflffl}
G0

3

: ð52Þ

Following RBD-FAST approach, each group receives a set of free of
interferences frequencies and is randomly permuted. This allows
to estimate the second-order indices S14, S15, S45, S27, S29, S79, S36,
S38 and S68, and all the first-order terms.

We then obtain the other configurations applying the follow-
ing rules:
(R1)
e 4001

ample
each of the new configurations is a partition of the input
variables into q groups of q factors,
(R2)
 each group in the new configurations is filled with one factor
of each original group ðG0

i Þi ¼ 1...q,

(R3)
 if a set of two distinct variables fXi,Xjg is already contained

in a group Gn
k, then we are not allowed to define a group Gm

l ,
with Mara’s strategy (MS) and the proposed efficient strategy (ES). We give,

of 200 estimator replicates.

S17 S47 S12 S45 S78

0 0 0.0429 0.0085 0

�0.0002 �0.0001 0.0423 0.0083 �0.0001

0.9 1.0 1.9 1.9 1.1

�0.0004 �0.0002 0.0423 0.0078 0.0001

6.4 6.0 9.9 9 6
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with lak and man, in a next configuration containing both
Xi and Xj.
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Fig. 2. Estimation of the first-order SI using RBD. We compare, for a fixed sample

size N¼501, the basic estimator (B1–B9) with the bias-corrected one (C1–C9). In

each column, we mark the theoretical SI with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the

median; the box has its lower and upper edges at the 25th percentile q and the

75th percentile Q, respectively; the whiskers extend between q�1:5ðQ�qÞ and

Qþ1:5ðQ�qÞ; the red crosses are outliers. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
For instance, in the case p¼9, it is only possible to create three
new configurations:

configuration 1 : X9X4X8|fflfflfflffl{zfflfflfflffl}
G1

1

X7X5X6|fflfflfflffl{zfflfflfflffl}
G1

2

X3X2X1|fflfflfflffl{zfflfflfflffl}
G1

3

,

configuration 2 : X6X1X9|fflfflfflffl{zfflfflfflffl}
G2

1

X3X7X4|fflfflfflffl{zfflfflfflffl}
G2

2

X2X8X5|fflfflfflffl{zfflfflfflffl}
G2

3

,

configuration 3 : X7X1X8|fflfflfflffl{zfflfflfflffl}
G3

1

X5X3X9|fflfflfflffl{zfflfflfflffl}
G3

2

X6X2X4|fflfflfflffl{zfflfflfflffl}
G3

3

, ð53Þ

here it is easy to notice that these four configurations 0, 1, 2 and
3 allow to compute one estimate of all the second-order SI and
four estimates of all the first-order terms.

More generally, we have the following proposition:

Proposition 1. In the case p¼ q2 with q prime, there exists an

efficient strategy using qþ1 designs of experiments and allowing to

compute qþ1 estimates of all the first-order SI and one estimate of

all the second-order terms.

Proof. See Appendix B.

5.2. Experimental designs for any p

In the general case, we first define

qn ¼minffiffi
p
p

r q
q prime

q ð54Þ

and

pn ¼ ðqnÞ
2: ð55Þ

Following the strategy presented in the previous section, we can
create qþ1 designs of experiments with pn factors, X1,y,Xp,y,
Xpn . We then delete variables Xpþ1,y, Xpn in all configurations.
For example, considering an eight-dimensional model, we get
qn ¼ 3 and pn ¼ 9, and we can use the designs of experiments
presented in Eqs. (52) and (53), and deleting the factor X9, we get

configuration 0 : X4X1X5|fflfflfflffl{zfflfflfflffl}
G0

1

X7X2|fflffl{zfflffl}
G0

2

X3X8X6|fflfflfflffl{zfflfflfflffl}
G0

3

,

configuration 1 : X4X8|fflffl{zfflffl}
G1

1

X7X5X6|fflfflfflffl{zfflfflfflffl}
G1

2

X3X2X1|fflfflfflffl{zfflfflfflffl}
G1

3

,

configuration 2 : X6X1|fflffl{zfflffl}
G2

1

X3X7X4|fflfflfflffl{zfflfflfflffl}
G2

2

X2X8X5|fflfflfflffl{zfflfflfflffl}
G2

3

,

configuration 3 : X7X1X8|fflfflfflffl{zfflfflfflffl}
G3

1

X5X3|fflffl{zfflffl}
G3

2

X6X2X4|fflfflfflffl{zfflfflfflffl}
G3

3

: ð56Þ

Hence, for any p, we have an economical strategy for which the
number of experimental designs satisfies Eq. (51).

Remark 7. Elaborating economical strategies is also of major
importance for the Sobol’ method in which the curse of dimen-
sionality is clearly problematic. In particular, one can cite the work
of Saltelli [24] who provides an economical way to estimate all the
first-order, second-order and total SI using the Sobol’ method.

6. Numerical tests

The accuracy of the proposed bias correction method is tested
on the g-function introduced by Sobol’ (see e.g. [25]). Considering
uniformly distributed independent input variables ðXiÞi ¼ 1...,p on
the unit hypercube, this function is defined as

f ðX1, . . . ,XpÞ ¼
Yp

i ¼ 1

giðXiÞ, ð57Þ

where giðXiÞ is given by

giðXiÞ ¼
94Xi�29þai

1þai
: ð58Þ

We consider a six-dimensional g-function where ðaiÞ ¼ ð0;0,0,
0:5,0:5,0;5Þ, so that the three first parameters are important, the
others are less important and interactions are quite important.
We then add three dummy factors X7, X8 and X9 that do not play
any role in the model.

The bias correction method and the efficient strategy are
tested on this nine-dimensional model.

6.1. Test on RBD

The correction method is tested using increasing sample sizes,
N¼501 and N¼2001 (see Figs. 2 and 3). In both cases, we
estimate all the first-order SI with the basic RBD method and
with the corrected one. The experiment is replicated 200 times
using different random permutations.

We observe that the corrected boxplots are centered on the
analytical values whatever the sample size. On the contrary, in the
absence of correction method, the estimates are considerably biased,
even for a large sample size. For a low sample size, we can notice
that the bias correction is of great importance because a factor
without any effect on the output can appear as a non-negligible one
using the basic RBD method (see B7, B8 and B9 in Fig. 2).

6.2. Tests on RBD-FAST

6.2.1. Computations using the efficient strategy

In this section, we test the bias correction method on RBD-
FAST. Applying the efficient strategy using RBD-FAST, we estimate
all the first- and second-order SI using only four experimental
designs – those presented in Eqs. (52) and (53) – with sample size
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Fig. 3. Estimation of the first-order SI using RBD. We compare, for a fixed sample

size N¼2001, the basic estimator (B1–B9) with the bias-corrected one (C1–C9). In

each column, we mark the theoretical SI with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the

median; the box has its lower and upper edges at the 25th percentile q and the

75th percentile Q, respectively; the whiskers extend between q�1:5ðQ�qÞ and

Qþ1:5ðQ�qÞ; the red crosses are outliers. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 4. Estimation of the first-order SI using RBD-FAST. We compare, for a fixed

sample size N¼4001, the basic estimator (B1–B9) with the bias-corrected one

(C1–C9). In each column, we mark the theoretical SI with a blue asterisk and plot

several summaries of a sample of 200 estimator replicates: the red central mark is

the median; the box has its lower and upper edges at the 25th percentile q and the

75th percentile Q, respectively; the whiskers extend between q�1:5ðQ�qÞ and

Qþ1:5ðQ�qÞ; the red crosses are outliers. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 5. Estimation of the second-order SI using RBD-FAST. We compare, for a fixed

sample size N¼4001, the basic estimator (Bij) with the bias-corrected one (Cij). In

each column, we mark the theoretical SI with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the

median; the box has its lower and upper edges at the 25th percentile q and the

75th percentile Q, respectively; the whiskers extend between q�1:5ðQ�qÞ and

Qþ1:5ðQ�qÞ; the red crosses are outliers. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 6. Estimation of the second-order SI using RBD-FAST. We compare, for a fixed

sample size N¼4001, the basic estimator (Bij) with the bias-corrected one (Cij). In

each column, we mark the theoretical SI with a blue asterisk and plot several

summaries of a sample of 200 estimator replicates: the red central mark is the

median; the box has its lower and upper edges at the 25th percentile q and the

75th percentile Q, respectively; the whiskers extend between q�1:5ðQ�qÞ and

Qþ1:5ðQ�qÞ; the red crosses are outliers. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
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4001. Following Remark 5, we neglect the third-order effects –
their contribution in the variance is theoretically lower than 10%
– so we apply Eqs. (46) and (47) with d¼ 2.

Here, designs are constructed using different random permuta-
tions and the set of frequencies free of interferences is fo1,o2,o3g ¼

f177;186,193g. We show in Figs. 4–6 boxplots of 200 replicates; all
first-order SI are shown in Fig. 4, and a representative subset of the
second-order SI is shown in Figs. 5 and 6. As in the previous test, the
corrected indices are centered on their respective theoretical value;
but some differences exist between main effects and interaction
estimations. On the one hand, first-order terms are accurately
evaluated, and their bias, in the absence of correction, are rather
low; on the other hand, interaction estimates suffer from a more
important variance and a larger bias in the absence of correction.
Two main reasons justify the difference between the variances.
Firstly the first-order terms are evaluated thanks to four estimates
per indices while the second-order ones are computed with only
one estimate, and secondly the complexity of SI grows with the
order. In terms of bias, the lower performance of the interaction
estimations without correction is essentially due to the larger
number of frequencies taken into account to evaluate the second-
order indices. Indeed, considering Eq. (46), we can notice that the
amplitude of the bias

lP

1�l
1�

X
Q D GðPÞ,Q a |

cardðQ Þr d

cSQ

0@ 1A ð59Þ
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is proportional to lP ¼ nðPÞ=N. In this test, we have nðPÞ ¼ 2N1 ¼

2� 10¼ 20 for the first-order SI, and nðPÞ ¼ 2N2ðN2�1Þ ¼ 2� 7�
ð7�1Þ ¼ 84 for the second-order SI. Note that the frequency set
{177,186,193} satisfies the criterion stated in Eqs. (19) and (20)
with parameters N1 ¼ 10, N2 ¼ 7 and N3 ¼ 0.
6.2.2. Comparison with Mara’s approach

We now estimate all the first- and second-order SI using the
strategy described in Mara [20]. With such an approach, input
variables are divided into four groups of two factors and one
single term. Hence, nine experimental designs have to be
employed. To keep the same computational cost as for the
previous experiment in Section 6.2.1, sample size is 1791 and
we use the set of frequencies fo1,o2g ¼ f79;83g. Note that this
frequency set satisfies the criterion stated in Eqs. (19) and (20)
with parameters N1 ¼ 10 and N2 ¼ 7. The experiment is replicated
200 times using different random permutations, and results
(empirical mean and variance for each strategy) are reported in
Table 1. On the one hand the accuracy of first-order SI estimates is
the same, and on the other hand we observe that the efficient
strategy provides second-order indices with lower variance. We
conclude that the choice of strategy seems to be important in
terms of variance reduction.
7. Conclusion

In this paper we presented a bias correction method for the
estimation of SI of any order by both RBD and RBD-FAST. In
particular, as we can notice through the numerical tests, this
technique successfully avoids the over-estimation of the first-
order and second-order indices, for any sample size.

We also introduced a strategy which, combined with the bias
correction method, provides an efficient way to estimate all the
first-order and second-order indices using RBD-FAST. In particu-
lar, this kind of approach allows to get a good overview of the
sensitivity of a model output at a low cost.

Finally this efficient strategy introduces the question of var-
iance reduction techniques (see Section 6.2.2), and a further work
is to improve RBD and RBD-FAST sampling methods. In particular,
optimization algorithms commonly used for Latin hypercube
sampling could be adapted for RBD experimental designs which
are, as we have noticed in Section 3, very close to Latin hypercube
designs.
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Appendix A. Details on formula (45)

We denote by ðPiÞi ¼ 1...n the nonempty subsets of fm1, . . . ,mdg

where n is given by

n¼
Xd

k ¼ 1

d

k

� �
¼ 2d
�1, ðA:1Þ
and, to simplify the notations, we denote by li the coefficients lPi
.

Applying Eq. (42) to each of the Pi, we get the linear system

cSP1cSP2

^dSPn�1cSPn

0BBBBBBBB@

1CCCCCCCCA
¼

1�l1 �l1 � � � � � � �l1

�l2 1�l2 �l2 � � � �l2

^ & & & ^

�ln�1 � � � � � � 1�ln�1 �ln�1

�ln � � � � � � �ln 1�ln

0BBBBBB@

1CCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

cSc
P1cSc
P2

^dSc
Pn�1cSc
Pn

0BBBBBBBBB@

1CCCCCCCCCA

þ

l1

l2

^

ln�1

ln

0BBBBBB@

1CCCCCCA: ðA:2Þ

The determinant D of the matrix of the system – denoted A – is
easy to compute. Subtracting the first column to all other ones,
we get

D¼

1�l1 �1 � � � � � � �1

�l2 1 0 � � � 0

^ 0 & & ^

^ ^ & & 0

�ln 0 � � � 0 1

������������

������������
ðA:3Þ

and, using Laplace expansion

D¼ 1�l1�l2 � � � �ln: ðA:4Þ

In practice, we fix N so thatXn

i ¼ 1

cardðPiÞoN: ðA:5Þ

Hence, with the definition in Eq. (43), we haveXn

i ¼ 1

lio1: ðA:6Þ

This implies that D is positive; in particular A is invertible.
We get A�1 using the formula based on the adjugate matrix

A�1
¼

tadjðAÞ

D:
ðA:7Þ

We easily obtain

adjðAÞ ¼

Dþl1 l2 � � � ln�1 ln

l1 Dþl2 & & ^

^ & & & ^

^ & & Dþln�1 ln

l1 l2 � � � ln�1 Dþln

0BBBBBB@

1CCCCCCA: ðA:8Þ

Finally we invert the linear system (A.2). It comescSc
P1cSc
P2

^dSc
Pn�1cSc
Pn

0BBBBBBBBB@

1CCCCCCCCCA
¼

1þ l1
D

l1
D � � � � � �

l1
D

l2
D 1þ l2

D
l2
D � � �

l2
D

^ & & & ^

^ & & & ^
ln
D � � � � � � ln

D 1þ ln
D

0BBBBBBB@

1CCCCCCCA

cSP1cSP2

^dSPn�1cSPn

0BBBBBBBB@

1CCCCCCCCA
�

l1
D
l2
D

^
ln�1
D
ln
D

0BBBBBBB@

1CCCCCCCA
ðA:9Þ

and we conclude that Eq. (45) holds.

Appendix B. Proof of Proposition 1

Let p¼ q2 with q prime. It is obvious that if there exists qþ1
designs of experiments satisfying the rules established in Section



J.-Y. Tissot, C. Prieur / Reliability Engineering and System Safety 107 (2012) 205–213 213
5.1, then these configurations allow to compute qþ1 estimates of
all first-order SI and one estimate of all second-order terms. So, to
show that an efficient strategy exists, it is sufficient to prove the
existence of such configurations under the rules (R1), (R2) and
(R3) of Section 5.1. We give a constructive proof.

We begin by renaming the factors ðXiÞi ¼ 1...p, and defining an
initial configuration

configuration 0 : X1
1 � � �X

q
1|fflfflfflfflffl{zfflfflfflfflffl}

G0
1

X1
2 � � �X

q
2|fflfflfflfflffl{zfflfflfflfflffl}

G0
2

� � �X1
q � � �X

q
q|fflfflfflfflffl{zfflfflfflfflffl}

G0
q

, ðB:1Þ

where Xj
i ¼ Xði�1Þqþ j. We then obtain the q other experimental

designs by considering for i¼ 1, . . . ,q

configuration i : X
s1

i
ð1Þ

1 � � �X
sq

i
ð1Þ

q|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Gi

1

X
s1

i
ð2Þ

1 � � �X
sq

i
ð2Þ

q|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Gi

2

� � �X
s1

i
ðqÞ

1 � � �X
sq

i
ðqÞ

q|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Gi

q

,

ðB:2Þ

where for all i and j between 1 and q, sj
i is a permutation on the

set f1, . . . ,qg. These configurations obviously satisfy rules (R1) and
(R2) since each group ðGi

jÞj ¼ 1...q is filled with one factor of each
original group ðG0

k Þk ¼ 1...q; but (R3) is not always verified. However
we can observe that, letting c be a cyclic permutation of order q,
the permutations

sj
i ¼ cij ¼ cJcJ � � �Jc|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ij times

ðB:3Þ

allow to satisfy rule (R3). Indeed, following the formalism of Eq.

(B.2), rule (R3) reads as for all i, i0, k, k0, j1 and j2 between 1 and q,

with io i0 and j1a j2, either the factor from G0
j1

inside Gk
i – i.e.

X
sj1

i
ðkÞ

j1
– is different from the factor from G0

j1
inside Gi0

k0 – i.e. X
sj1

i0
ðk0 Þ

j1

– or the factor from G0
j2

inside Gk
i – i.e. X

sj2
i
ðkÞ

j2
– is different from the

factor from G0
j2

inside Gi0
k0 – i.e. X

sj2
i0
ðk0 Þ

j2
. That is to say

81r i,i0,k,k0,j1,j2rq,io i0,j1a j2,

sj1

i ðkÞasj1
i0
ðk0Þ

or

sj2

i ðkÞasj2
i0
ðk0Þ:

8>><>>: ðB:4Þ

So, assuming Eq. (B.3), let us prove that

81r i,i0,k,k0,j1,j2rq,io i0,j1a j2,

cij1 ðkÞaci0j1 ðk0Þ

or

cij2 ðkÞaci0j2 ðk0Þ:

8><>: ðB:5Þ

Suppose, by contradiction, that

cij1 ðkÞ ¼ ci0 j1 ðk0Þ and cij2 ðkÞ ¼ ci0 j2 ðk0Þ ðB:6Þ

for some ði,i0,k,k0,j1,j2Þ with ia i0 and j1a j2. It follows that

cði�i0 Þðj1�j2ÞðkÞ ¼ k: ðB:7Þ

Then, c being a cyclic permutation of order q with q prime and i

being different from i0, we deduce that cði�i0 Þ is a cyclic
permutation of order q. Hence, j1�j2 ¼ qr for a certain integer r.

But, assuming 1r j1, j2rq, we conclude that r¼0 and j1 ¼ j2, a

contradiction to our assumption j1a j2. The conclusion follows.
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