N, -
< _.. MATHEMATICS
%@ ] AND
%/ COMPUTERS

IN SIMULATION

ELSEVIER Mathematics and Computers in Simulation 55 (2001) 271-280

www.elsevier.nl/locate/matcom

Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates

[.M. Sobol*

Institute for Mathematical Modelling of the Russian Academy of Sciences,
4 Miusskaya Square, Moscow 125047, Russia

Abstract

Global sensitivity indices for rather complex mathematical models can be efficiently computed by Monte Carlo
(or quasi-Monte Carlo) methods. These indices are used for estimating the influence of individual variables or
groups of variables on the model output. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Assume that the model under investigation is described by a funatien f(x), where the input
x = (x1,...,x,) is a point inside am-dimensional box and is a scalar output.

Letu* = f(x*) be the required solution. In most papers, the sensitivity of the solutianth respect
to x; is considered. It is estimated by the partial derivative/d.x;).—.~. This approach to sensitivity is
sometimes called local sensitivity.

The global sensitivity approach does not specify the input x*, it considers the modéx) inside
the box. Therefore, global sensitivity indices should be regarded as a tool for studying the mathematical
model rather then its specified solution. Both approaches are represented in [3,8].

In this paper] is the unit interval [0, 1])" the n-dimensional unit hypercube, ande 1". All the
integrals below are from 0 to 1 for each variable ard=eldx;...dx,,.

2. ANOVA-representation

Consider an integrable functid(x) defined inl”. We shall study its representation in the form

fx) = fo+ Z Z Sigeiy (Xigs oo o5 X0, 1)

s=1li1<--<iy
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where 1< i; < --- < iy < n. Formula (1) means that
i i<j
the total number of summands in (1) i%.2

Definition 1. Formula (1) is called ANOVA-representation fgx) if

1
ﬁl...,'y(x,-l,...,x,-A)dxk=O for k=iq,...,I. (2)

0
It follows from (2) that the members in (1) are orthogonal and can be expressed as inteifrgldrdeed,

[ rwar=p

[ f(x)l_[dxk = fo+ fi(xi),
kst

/ FO [T o = fo+ £it) + £ + fi(xir x)),
ki, j
and so on.
In my early papers, (1) with (2) was called decomposition into summands of different dimensions
[11,12]. The term ANOVA comes from Analysis Of Variances [2].
Assume now thal(x) is square integrable. Then all tifg...;, in (1) are square integrable also. Squaring
(1) and integrating ovdr’ we get

/ fP)dx — 2 = Z Z / [ dxg, e
s=lig<-<iy

The constants
D= f Podv—f2. Dy = / £2.. da, - - dx,.

are called variances and

n n
D=Y" > Di.i.

s=1li1<--<iy

The origin of this term is clear: ik were a random point uniformly distributed Ifi, thenf(x) and
Siyi, (Xiy, ..., x;,) would be random variables with variand@sind D;, ...; , respectively.

3. Sensitivity indices

Definition 2. The ratios
Di wed
Sil"'i.v = % (3)

are called global sensitivity indices.
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The integersis often called the order or the dimension of the index (3). All§he; are nonnegative
and their sumis

YN Sy =1

s=lip<--<iy

For a piecewise continuous functif®), the equalitys;,..,, = 0 means thaf;,...; (x;,., ..., x;,) = 0. Thus
the functional structure d{x) can be investigated by estimating numb&s,. .

The introduction ofS;,..;, can be regarded as more or less evident. The main breakthrough in [12] is
the computation algorithm that allows a direct estimation of global sensitivity indices using vafi(gs of
only. And this is a Monte Carlo algorithm.

Three types of problems will be indicated below that can be studied with the aid of global sensitivity
indices.

1. Ranking of variables irf (xq, . . ., x,).
2. Fixing unessential variables if(x1, ..., x;).
3. Deleting high order members in (1).

4. Ranking of input variables

The simplest approach is to estimate first order indizes. . , S, and to order the variables according to
these values. For this purpose several techniques were applied already in the eighties, e.g. FAST (Fourier
Amplitude Sensitivity Test) [1,4]. However, such an approach is insufficient if theSsum- - - + S, is
much less than 1.
As an example, consider a problem whgrendx; are amounts of two different chemical elements.
It may happen that bot§ andS; are much smaller thag;. This is an indication that an important role
is played by chemicals that include both elements.
One can easily notice th&t + - - - + S, = 1 means thaf(x) is a sum of one-dimensional functions

fO) = fot+ D filxi).

i=1
4.1. Numerical example

A function with separated variables was considered [9,10]

n
g = ]_[wi(x,-),
i=1

whereg; (t) = (|4t — 2| + a;) /(1 + a;) depends on a nonnegative paramatelf a; = 0 the multiplier
@; (t) varies from 0 to 2 and the variabkeis important. Ifa; = 3 they; () varies from 0.75 to 1.25 and
the corresponding; is unimportant.

Letn =8, a1 =a,=0, az3=---=ag=3.
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The importance of the first two variables can be seen from the indiges: S, = 0.329 while
S3 =--- = Sg = 0.021. The second order indices afg; = 0.110; S; = 0.007 if one of the indices is 1
or 2; andsS;; = 0.0004 if bothi andj correspond to unimportant variables. The largest third order indices
areS1y = 0.002 fork > 3; the other third order indices do not exceed 0.00014.

5. Sensitivity indices for subsets of variables

Consider an arbitrary set afivariables, 1< m < n — 1, that will be denoted by one letter

y:(xkl,...,ka), 1§kl<<km§ns

and letz be the set ot — m complementary variables. Thus= (y, z).
Let K = (ks, ..., k,»). The variance corresponding to the subsean be defined as

m
0,=%" ¥ b, @
s=1(i1<--<is)eK
The sum in (4) is extended over all groups (.., is) where all thaq, .. ., is belong toK.
Similarly, the varianc®, can be introduced. Then the total variance corresponding to the subset
DY =D —D..

One can notice tharv;Ot is also asum of;,..; ; butitis extended over all groups (. . ., is) where at least
onei; € K. Here 1< s < n.
Two global sensitivity indices for the subseare introduced [5,12].

Definition 3.
tot
S _ & StOt _ D_y
y= ) y = :
D D

Clearly, S;Ot =1-§;and always < S, < S;Ot < 1. The most informative are the extreme situations:
Sy = 8" = 0 means thaff (x) does not depend on

Sy = S;Ot = 1 means thaff (x) depends ory only.

Example 1. Assume that = 3 and consider two subsets of variables:
1. y = (x1). Thenz = (x, x3) and

S = S1,

59 = S1+ S12+ S134 S123=1— S(2.3).
2. y = (x1, x2). Thenz = (x3) and

S2 = S1+ S2 + S12,

S?itz) =81+ 82+ S12+ S13+ So3+ S103=1-S3.
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6. Model approximation error

Let h(x) be a square integrable function regarded as an approximati@).tvVe shall use the scaled
L, distance for estimating the approximation error:

1
S = /[f(x) (o).

If the crudest approximatiorigx) = const are considered, the best result is obtainédat= fy; then
3(f, fo) = 1. Hence, good approximations are the ones 84th ) < 1.

7. Fixing unessential variables

Assume thas™®" « 1. In this casef(x) depends mainly oy and an approximatioh = f(y, zo) with
some fixedzp € 1"~ can be suggested. The following theorem [12,13] shows that the approximation
error8(f, h) = 8(zo) depends ors™".

Theorem 1. For an arbitrary zo € 1"
8(zo) = SEOt.

But if 7y is a random point uniformly distributed I8~ then for an arbitrarg > 0

P {8(20) < <1+ %) S;Ot} >1—c¢.

For example, selecting= 1/2 we conclude that the probability th&tzo) < 35°' exceeds 0.5.
8. A Monte Carlo approach

Theorem 2. Subset’s varianc®,, is equal to
D, = [ fefor2)dvas - £ ©)

Proof. The integral in (5) can be transformed:

2
/f(X)f(y,z/)dde’=/dy/f(y,Z)dZ/f(y,z/)dZ’=/dy [/f(y,Z)dZ] -

Applying (1) we conclude that

/f(y,z) dz = fo+Z Z Sigeiy Kigs oo, X3).

s=1(i1<--<is)eK
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After squaring and integrating ovelad= dxy, - - - dx;, we obtain

[rwrodd =G4y Y Dus=f+D,

s=1(i1<--<is)eK

And this is equivalent to (5). O
A formula similar to (5) can be written fdp,:
D.= [ feosedvay - £

Thus, for computings, andS;Ot =1 - S, one has to estimate four integrals:

/f(x)dx, /fz(x)dx, /f(x)f(y,z/)dxdz’ and /f(x)f(y’,z)dxdy/.

Now a Monte Carlo method can be constructed. Consider two independent randomépaimts’
uniformly distributed inl” and leté = (n,¢), & = (', ¢’). Each Monte Carlo trial requires three
computations of the modelf (¢§) = f(n, ¢), f(n, ¢') andf(y’, ¢). After N trials, crude Monte Carlo
estimates are obtained:

1 1d
SO SEN T for D FENF (. 8Dy + S,
Jj=1

j=1

1o 2 P 2 1o / P 2

S LHENSD LS 2D FEN O e D S (6)
j=1 j=1

The stochastic convergenéDe in (6) is implied by absolute convergence of the four integrals that follows
from the square integrability d{x).

9. On computation algorithms

1. A Monte Carlo algorithm corresponding to (6) can be easily defined: fojtth&ial, 2n standard
random numbers;, ..., y; are generated; then

Sj:(y]{99yn])’ gj/':()/,lj+17---,)/zj,1)a

andj =1,2,...,N.

2. A quasi-Monte Carlo algorithm can be defined similarly [14]. Qet Q,, ... be a low discrepancy
sequence of points iF” (sometimes it is called quasi-random sequence). Fojthhiial the point
Q;=1(qi,....q3,) is generated and

SI :(q{,,q},{), Sj/:(qy]l_i_l?’qén)

As arule, quasi-Monte Carlo implementations of (6) converge faster than ordinary Monte Carlo. Quite
often LP,-sequences (also callet] §)-sequences in base 2 or Sobol sequences) are used [2].
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3. The computation of variances from (6) may proceed with a loss of accuracy if the mearigvalue
large. Therefore it was suggested in [12] to find a crude approximate sghiefy and to introduce
a new model functiory (x) — cq rather tharf(x). For the new model function the constant term in (1)
will be small: fy — co.

4. It must be mentioned that several variance reducing technigues (importance sampling, weighted uni-
form sampling, variance reducing multipliers) are inefficient if a vanishing integral is evaluated.
Therefore in [15] an attempt was made to use variance reduction in integratibh&pff (X)f (y, 2)
andf (X)f (y, 2 while f(x) was integrated by crude Monte Carlo. In these experiments quasi-Monte
Carlo outplayed Monte Carlo with variance reduction.

5. Monte Carlo estimates (6) can be applied for evaluating all the indjces.

A first order index§ is estimated directly because = S;, — the index of a set consisting of one
variablex;.
A second order indes; is defined from the relatiod, = S; + S; + Sj whereS;;, is estimated

directly: it is the index of the set = (x;, x;). And so on.
Clearly, the estimation of high order indices can be spoilt by a loss of accuracy. However, the most
interesting are the largest indices and for them the loss of accuracy is not so harmful.

10. An alternative Monte Carlo approach
The following integral representation Of;"‘ is a slight generalization of formulas used in [6] and [16].

Theorem 3. Subset’s total varianc®™ is equal to

1
D=3 / [f(y,2) = F(, D) Pdx dy” 7

1
> /[f(y, 2) — £, 2)]Pdy dz dy’
1 1
=3 / o+ / F200 2y dy' dz — f FEOFO 2 dedy

= / FAx)dx — (D + f2) = D~ D, = D 0

Proof. An expression similar to (7) can be written fbf°. Therefore the last two Monte Carlo estimates
in (6) can be replaced by estimates

=

1 1
o 2L E) = F D =D S [ — fj )] > DY (8)

j=1 j=1

with a subsequent computationbf = D — D!*', D, = D — D*. O
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11. Comparison of variances

Consider the estimators from Section 8:

nw=fEfn¢)
and

= f2E) - fEf0, 0.

Their expectations arg(u) = Dy + f§, E(u'®) = D'
The corresponding estimators from Section 10 are

h=r2E) = 3lFE — f, )P
and

MU= 2FE) - f(, O
with expectations (A) = D, + f¢, E(A\'*") = D™

Theorem 4. The variances ofi, A, 1!, A'°! satisfy inequalities

var(n) < var(h), var(u'©h > var(n'°h). 9)

The inequalities (9) suggest a somewhat unexpected conclusion: it may be expedient to apply simulta-
neously (6) for estimatin®, and (8) for estimating);ot with subsequent computation of

D.=D - D}, D®'=D-D,.

Proof of the theorem. We shall compare expectations of squares. First, congl{ed):
2 ’ 1 2 2 ’ 2 /
EG) = [ {1 f0.2)+ 5120 = 2001 drds
1
= [ re0r2e v+ g [0 - £, Pdxd

+/[f3(X)f(y, Z) = f) 2y, )] dx dZ'.

The last integral vanishes:

/dy/f3(y,1)dZ/f(y,Z’)dz—/dy/f(y,Z)dz/f?’(y,z’)dz’=0.

The second integral is nonnegative. Hence

EG) = / LF () £ (v P d2’ = E(u?)

and vari) > var(u).
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Second, consider the expectation of{)2:

1
BL6 = 4 [/ - 70/ o]t ey
Denote byR the nonnegative function

R=[f(y,2) - f(, D)
that is symmetric iry andy’. Then

1 1
B[00 = 5 [1£00) = 7O 2PRAydy d < 5 [27%002) + 2720 2] Rdy o' dz

:/fz(x)R dydy' dz = E[(1")?].

Hence va(\'") < var(u'). O

12. Deleting high order members in (1)

Recently, Prof. H. Rabitz [7] has suggested that quite often in mathematical models the low order
interactions of input variables have the main impact upon the output. For such models the following
approximation can be used:

L n
ho()=fot > Y fiei, @iy o0 x7) (10)

s=lii<---<iy

with L « n.

Theorem 5. If the model §X) is approximated by10) then the approximation error is

L n
S(fh)=1=>" " Sy (11)

s=1li1<--<iy

Proof. From (1) and (10)

FO =h@)= D" 3" firi, iy x)

s=L+1lij<---<iy

and all the members on the right-hand side are orthogonal. Squaring, integratingy aveérdividing by
D, we obtain

S(fh) =Y D S

s=L+1li1<--<iy

and this is equivalent to (11). O
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Relation (11) shows that estimating low order sensitivity indices (with L) one can verify the
suggestion of Prof. Rabitz.
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