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Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates

I.M. Sobol′∗
Institute for Mathematical Modelling of the Russian Academy of Sciences,

4 Miusskaya Square, Moscow 125047, Russia

Abstract

Global sensitivity indices for rather complex mathematical models can be efficiently computed by Monte Carlo
(or quasi-Monte Carlo) methods. These indices are used for estimating the influence of individual variables or
groups of variables on the model output. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Assume that the model under investigation is described by a functionu = f (x), where the input
x = (x1, . . . , xn) is a point inside ann-dimensional box andu is a scalar output.

Let u∗ = f (x∗) be the required solution. In most papers, the sensitivity of the solutionu∗ with respect
to xk is considered. It is estimated by the partial derivative(∂u/∂xk)x=x∗ . This approach to sensitivity is
sometimes called local sensitivity.

The global sensitivity approach does not specify the inputx = x∗, it considers the modelf (x) inside
the box. Therefore, global sensitivity indices should be regarded as a tool for studying the mathematical
model rather then its specified solution. Both approaches are represented in [3,8].

In this paper,I is the unit interval [0, 1],In the n-dimensional unit hypercube, andx ∈ I n. All the
integrals below are from 0 to 1 for each variable and dx = dx1···dxn.

2. ANOVA-representation

Consider an integrable functionf(x) defined inIn. We shall study its representation in the form

f (x) = f0 +
n∑

s=1

n∑
i1<···<is

fi1···is (xi1, . . . , xis ), (1)
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where 1≤ i1 < · · · < is ≤ n. Formula (1) means that

f (x) = f0 +
∑

i

fi(xi) +
∑
i<j

fij (xi, xj ) + · · · + f12···n(x1, x2, . . . , xn),

the total number of summands in (1) is 2n .

Definition 1. Formula (1) is called ANOVA-representation off(x) if∫ 1

0
fi1···is (xi1, . . . , xis ) dxk = 0 for k = i1, . . . , is . (2)

It follows from (2) that the members in (1) are orthogonal and can be expressed as integrals off (x). Indeed,∫
f (x) dx = f0,

∫
f (x)

∏
k 6=i

dxk = f0 + fi(xi),

∫
f (x)

∏
k 6=i,j

dxk = f0 + fi(xi) + fj (xj ) + fij (xi, xj ),

and so on.
In my early papers, (1) with (2) was called decomposition into summands of different dimensions

[11,12]. The term ANOVA comes from Analysis Of Variances [2].
Assume now thatf(x) is square integrable. Then all thefi1···is in (1) are square integrable also. Squaring

(1) and integrating overIn we get∫
f 2(x) dx − f 2

0 =
n∑

s=1

n∑
i1<···<is

∫
f 2

i1···is dxi1 · · · dxis .

The constants

D =
∫

f 2 dx − f 2
0 , Di1···is =

∫
f 2

i1···is dxi1 · · · dxis ,

are called variances and

D =
n∑

s=1

n∑
i1<···<is

Di1···is .

The origin of this term is clear: ifx were a random point uniformly distributed inIn, then f (x) and
fi1···is (xi1, . . . , xis ) would be random variables with variancesD andDi1···is , respectively.

3. Sensitivity indices

Definition 2. The ratios

Si1···is = Di1···is
D

(3)

are called global sensitivity indices.
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The integers is often called the order or the dimension of the index (3). All theSi1···is are nonnegative
and their sum is

n∑
s=1

n∑
i1<···<is

Si1···is = 1.

For a piecewise continuous functionf(x), the equalitySi1···is = 0 means thatfi1···is (xi1, . . . , xis ) ≡ 0. Thus
the functional structure off(x) can be investigated by estimating numbersSi1···is .

The introduction ofSi1···is can be regarded as more or less evident. The main breakthrough in [12] is
the computation algorithm that allows a direct estimation of global sensitivity indices using values off(x)
only. And this is a Monte Carlo algorithm.

Three types of problems will be indicated below that can be studied with the aid of global sensitivity
indices.

1. Ranking of variables inf (x1, . . . , xn).
2. Fixing unessential variables inf (x1, . . . , xn).
3. Deleting high order members in (1).

4. Ranking of input variables

The simplest approach is to estimate first order indicesS1, . . . , Sn and to order the variables according to
these values. For this purpose several techniques were applied already in the eighties, e.g. FAST (Fourier
Amplitude Sensitivity Test) [1,4]. However, such an approach is insufficient if the sumS1 + · · · + Sn is
much less than 1.

As an example, consider a problem wherexi andxj are amounts of two different chemical elements.
It may happen that bothSi andSj are much smaller thanSij . This is an indication that an important role
is played by chemicals that include both elements.

One can easily notice thatS1 + · · · + Sn = 1 means thatf(x) is a sum of one-dimensional functions

f (x) = f0 +
n∑

i=1

fi(xi).

4.1. Numerical example

A function with separated variables was considered [9,10]

g =
n∏

i=1

ϕi(xi),

whereϕi(t) = (|4t − 2| + ai)/(1 + ai) depends on a nonnegative parameterai . If ai = 0 the multiplier
ϕi(t) varies from 0 to 2 and the variablexi is important. Ifai = 3 theϕi(t) varies from 0.75 to 1.25 and
the correspondingxi is unimportant.

Let n = 8, a1 = a2 = 0, a3 = · · · = a8 = 3.
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The importance of the first two variables can be seen from the indices:S1 = S2 = 0.329 while
S3 = · · · = S8 = 0.021. The second order indices are:S12 = 0.110;Sij = 0.007 if one of the indices is 1
or 2; andSij = 0.0004 if bothi andj correspond to unimportant variables. The largest third order indices
areS12k = 0.002 fork ≥ 3; the other third order indices do not exceed 0.00014.

5. Sensitivity indices for subsets of variables

Consider an arbitrary set ofm variables, 1≤ m ≤ n − 1, that will be denoted by one letter

y = (xk1, . . . , xkm
), 1 ≤ k1 < · · · < km ≤ n,

and letz be the set ofn − m complementary variables. Thusx = (y, z).
Let K = (k1, . . . , km). The variance corresponding to the subsety can be defined as

Dy =
m∑

s=1

∑
(i1<···<is)∈K

Di1···is (4)

The sum in (4) is extended over all groups (i1, . . . , is) where all thei1, . . . , is belong toK.
Similarly, the varianceDz can be introduced. Then the total variance corresponding to the subsety is

Dtot
y = D − Dz.

One can notice thatDtot
y is also a sum ofSi1···is ; but it is extended over all groups (i1, . . . , is) where at least

oneil ∈ K. Here 1≤ s ≤ n.
Two global sensitivity indices for the subsety are introduced [5,12].

Definition 3.

Sy = Dy

D
, S tot

y = Dtot
y

D
.

Clearly,S tot
y = 1 − Sz and always 0≤ Sy ≤ S tot

y ≤ 1. The most informative are the extreme situations:

Sy = S tot
y = 0 means thatf (x) does not depend ony,

Sy = S tot
y = 1 means thatf (x) depends ony only.

Example 1. Assume thatn = 3 and consider two subsets of variables:

1. y = (x1). Thenz = (x2, x3) and

S(1) = S1,

S tot
(1) = S1 + S12 + S13 + S123 = 1 − S(2,3).

2. y = (x1, x2). Thenz = (x3) and

S(1,2) = S1 + S2 + S12,

S tot
(1,2) = S1 + S2 + S12 + S13 + S23 + S123 = 1 − S3.
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6. Model approximation error

Let h(x) be a square integrable function regarded as an approximation tof(x). We shall use the scaled
L2 distance for estimating the approximation error:

δ(f, h) = 1

D

∫
[f (x) − h(x)]2 dx.

If the crudest approximationsh(x) ≡ const are considered, the best result is obtained ath(x) ≡ f0; then
δ(f, f0) = 1. Hence, good approximations are the ones withδ(f, h) � 1.

7. Fixing unessential variables

Assume thatS tot
z � 1. In this case,f(x) depends mainly ony and an approximationh = f (y, z0) with

some fixedz0 ∈ I n−m can be suggested. The following theorem [12,13] shows that the approximation
errorδ(f, h) ≡ δ(z0) depends onS tot

z .

Theorem 1. For an arbitrary z0 ∈ I n−m

δ(z0) ≥ S tot
z .

But if z0 is a random point uniformly distributed inIn−m then for an arbitraryε > 0

P

{
δ(z0) <

(
1 + 1

ε

)
S tot

z

}
≥ 1 − ε.

For example, selectingε = 1/2 we conclude that the probability thatδ(z0) < 3S tot
z exceeds 0.5.

8. A Monte Carlo approach

Theorem 2. Subset’s varianceDy is equal to

Dy =
∫

f (x)f (y, z′) dx dz′ − f 2
0 . (5)

Proof. The integral in (5) can be transformed:

∫
f (x)f (y, z′) dx dz′ =

∫
dy

∫
f (y, z) dz

∫
f (y, z′) dz′ =

∫
dy

[∫
f (y, z) dz

]2

.

Applying (1) we conclude that

∫
f (y, z) dz = f0 +

m∑
s=1

∑
(i1<···<is)∈K

fi1···is (xi1, . . . , xis ).
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After squaring and integrating over dy = dxk1 · · · dxkm
we obtain

∫
f (x)f (y, z′) dx dz′ = f 2

0 +
m∑

s=1

∑
(i1<···<is)∈K

Di1...is = f 2
0 + Dy.

And this is equivalent to (5). �

A formula similar to (5) can be written forDz:

Dz =
∫

f (x)f (y ′, z) dx dy ′ − f 2
0 .

Thus, for computingSy andS tot
y = 1 − Sz one has to estimate four integrals:∫

f (x) dx,

∫
f 2(x) dx,

∫
f (x)f (y, z′) dx dz′ and

∫
f (x)f (y ′, z) dx dy ′.

Now a Monte Carlo method can be constructed. Consider two independent random pointsξ andξ ′

uniformly distributed inIn and letξ = (η, ζ ), ξ ′ = (η′, ζ ′). Each Monte Carlo trial requires three
computations of the model:f (ξ) ≡ f (η, ζ ), f(η, ζ ′) and f(η′, ζ ). After N trials, crude Monte Carlo
estimates are obtained:

1

N

N∑
j=1

f (ξj )
P→f0,

1

N

N∑
j=1

f (ξj )f (ηj , ζ
′
j )

P→Dy + f 2
0 ,

1

N

N∑
j=1

f 2(ξj )
P→D + f 2

0 ,
1

N

N∑
j=1

f (ξj )f (η′
j , ζj )

P→Dz + f 2
0 . (6)

The stochastic convergence
P→ in (6) is implied by absolute convergence of the four integrals that follows

from the square integrability off(x).

9. On computation algorithms

1. A Monte Carlo algorithm corresponding to (6) can be easily defined: for thejth trial, 2n standard
random numbersγ j

1 , . . . , γ
j

2n are generated; then

ξj = (γ
j

1 , . . . , γ j
n ), ξ ′

j = (γ
j

n+1, . . . , γ
j

2n),

andj = 1, 2, . . . , N .
2. A quasi-Monte Carlo algorithm can be defined similarly [14]. LetQ1, Q2, . . . be a low discrepancy

sequence of points inI2n (sometimes it is called quasi-random sequence). For thejth trial the point
Qj = (q

j

1 , . . . , q
j

2n) is generated and

ξj = (q
j

1 , . . . , qj
n ), ξ ′

j = (q
j

n+1, . . . , q
j

2n).

As a rule, quasi-Monte Carlo implementations of (6) converge faster than ordinary Monte Carlo. Quite
often LPτ -sequences (also called (t, s)-sequences in base 2 or Sobol sequences) are used [2].
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3. The computation of variances from (6) may proceed with a loss of accuracy if the mean valuef0 is
large. Therefore it was suggested in [12] to find a crude approximate valuec0 ≈ f0 and to introduce
a new model functionf (x) − c0 rather thanf(x). For the new model function the constant term in (1)
will be small:f0 − c0.

4. It must be mentioned that several variance reducing techniques (importance sampling, weighted uni-
form sampling, variance reducing multipliers) are inefficient if a vanishing integral is evaluated.
Therefore in [15] an attempt was made to use variance reduction in integrations off 2 (x), f (x)f (y, z′)
and f (x)f (y′, z) while f (x) was integrated by crude Monte Carlo. In these experiments quasi-Monte
Carlo outplayed Monte Carlo with variance reduction.

5. Monte Carlo estimates (6) can be applied for evaluating all the indicesSi1···is .

A first order indexSi is estimated directly becauseSi = S(i) — the index of a set consisting of one
variablexi .

A second order indexSij is defined from the relationS(ij) = Si + Sj + Sij whereS(ij) is estimated
directly: it is the index of the sety = (xi, xj ). And so on.

Clearly, the estimation of high order indices can be spoilt by a loss of accuracy. However, the most
interesting are the largest indices and for them the loss of accuracy is not so harmful.

10. An alternative Monte Carlo approach

The following integral representation ofDtot
y is a slight generalization of formulas used in [6] and [16].

Theorem 3. Subset’s total varianceDtot
y is equal to

Dtot
y = 1

2

∫
[f (y, z) − f (y ′, z)]2dx dy ′. (7)

1

2

∫
[f (y, z) − f (y ′, z)]2dy dz dy ′

= 1

2

∫
f 2(x) dx + 1

2

∫
f 2(y ′, z) dy ′ dz −

∫
f (x)f (y ′, z) dx dy ′

=
∫

f 2(x) dx − (Dz + f 2
0 ) = D − Dz = Dtot

y . �

Proof. An expression similar to (7) can be written forDtot
z . Therefore the last two Monte Carlo estimates

in (6) can be replaced by estimates

1

2N

N∑
j=1

[
f (ξj ) − f (ηj , ζ

′
j )

]2 P→Dtot
z ,

1

2N

N∑
j=1

[
f (ξj ) − f (η′

j , ζj )
]2 P→Dtot

y , (8)

with a subsequent computation ofDy = D − Dtot
z , Dz = D − Dtot

y . �
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11. Comparison of variances

Consider the estimators from Section 8:

µ = f (ξ)f (η, ζ ′)

and

µtot = f 2(ξ) − f (ξ)f (η′, ζ ).

Their expectations areEEE(µ) = Dy + f 2
0 , EEE(µtot) = Dtot

y .
The corresponding estimators from Section 10 are

λ = f 2(ξ) − 1
2[f (ξ) − f (η, ζ ′)]2

and

λtot = 1
2[f (ξ) − f (η′, ζ )]2

with expectationsEEE(λ) = Dy + f 2
0 , EEE(λtot) = Dtot

y .

Theorem 4. The variances ofµ, λ, µtot, λtot satisfy inequalities

var(µ) ≤ var(λ), var(µtot) ≥ var(λtot). (9)

The inequalities (9) suggest a somewhat unexpected conclusion: it may be expedient to apply simulta-
neously (6) for estimatingDy and (8) for estimatingDtot

y with subsequent computation of

Dz = D − Dtot
y , Dtot

z = D − Dy.

Proof of the theorem. We shall compare expectations of squares. First, considerEEE(λ2):

EEE(λ2) =
∫ {

f (x)f (y, z′) + 1

2
[f 2(x) − f 2(y, z′)]

}2

dx dz′

=
∫

f 2(x)f 2(y, z′) dx dz′ + 1

4

∫
[f 2(x) − f 2(y, z′)]2dx dz′

+
∫

[f 3(x)f (y, z′) − f (x)f 3(y, z′)] dx dz′.

The last integral vanishes:∫
dy

∫
f 3(y, z) dz

∫
f (y, z′) dz −

∫
dy

∫
f (y, z) dz

∫
f 3(y, z′) dz′ = 0.

The second integral is nonnegative. Hence

EEE(λ2) ≥
∫

[f (x)f (y, z′)]2dx dz′ = EEE(µ2)

and var(λ) ≥ var(µ).
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Second, consider the expectation of (λtot)2:

EEE[(λtot)2] = 1

4

∫
[f (x) − f (y ′, z)]4 dx dy ′.

Denote byR the nonnegative function

R = [f (y, z) − f (y ′, z)]2

that is symmetric iny andy′. Then

EEE[(λtot)2] = 1

4

∫
[f (y, z) − f (y ′, z)]2R dy dy ′ dz ≤ 1

4

∫
[2f 2(y, z) + 2f 2(y ′, z)]R dy dy ′ dz

=
∫

f 2(x)R dy dy ′ dz = EEE[(µtot)2].

Hence var(λtot) ≤ var(µtot). �

12. Deleting high order members in (1)

Recently, Prof. H. Rabitz [7] has suggested that quite often in mathematical models the low order
interactions of input variables have the main impact upon the output. For such models the following
approximation can be used:

hL(x) = f0 +
L∑

s=1

n∑
i1<···<is

fi1···is (xi1, . . . , xis ) (10)

with L � n.

Theorem 5. If the model f(x) is approximated by(10) then the approximation error is

δ(f, hL) = 1 −
L∑

s=1

n∑
i1<···<is

Si1···is . (11)

Proof. From (1) and (10)

f (x) − hL(x) =
n∑

s=L+1

n∑
i1<···<is

fi1···is (xi1, . . . , xis )

and all the members on the right-hand side are orthogonal. Squaring, integrating overIn and dividing by
D, we obtain

δ(f, hL) =
n∑

s=L+1

n∑
i1<···<is

Si1···is

and this is equivalent to (11). �
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Relation (11) shows that estimating low order sensitivity indices (withs ≤ L) one can verify the
suggestion of Prof. Rabitz.
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