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Simulation models support managers in the solution of complex problems. International agencies recom-
mend uncertainty and global sensitivity methods as best practice in the audit, validation and application
of scientific codes. However, numerical complexity, especially in the presence of a high number of factors,
induces analysts to employ less informative but numerically cheaper methods. This work introduces a
design for estimating global sensitivity indices from given data (including simulation input–output data),
at the minimum computational cost. We address the problem starting with a statistic based on the L1-
norm. A formal definition of the estimators is provided and corresponding consistency theorems are
proved. The determination of confidence intervals through a bias-reducing bootstrap estimator is inves-
tigated. The strategy is applied in the identification of the key drivers of uncertainty for the complex com-
puter code developed at the National Aeronautics and Space Administration (NASA) assessing the risk of
lunar space missions. We also introduce a symmetry result that enables the estimation of global sensi-
tivity measures to datasets produced outside a conventional input–output functional framework.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Simulation and decision support models accompany managers
in the solution of operational problems (Dillon et al., 2003). Theo-
retical advances as well as the steady increase in computing power
allow analysts to build sophisticated codes that capture detailed
facets of the problems under investigation. However, because of
model complexity the structure of the input–output mapping be-
comes a black-box exposing analysts and decision makers to the
risk of overconfidence in model predictions (Kleijnen, 2005).

Agencies such as the US Environmental Protection Agency (US
EPA, 2009, p. vii), the National Aeronautics and Space Administra-
tion (Borgonovo and Smith, 2011), the Florida Commission
Hurricane Loss Projection Methodology (Iman et al., 2005) and
the European Commission (Saisana et al., 2005; Saltelli, 2009), rec-
ommend the use of uncertainty analysis and global sensitivity
analysis (SA) as part of best practices for model application, valida-
tion and audit. On the role of uncertainty analysis in the context of
modelling, we also refer to Kleijnen (2001). When model parame-
ters are not known with certainty, uncertainty analysis is essential
for modellers to obtain a representation of model predictions
consistent with their state-of-knowledge, hedging the risk of over-
confidence in model results (see Kleijnen and Helton (1999),
Helton (2004) for a thorough discussion).
ll rights reserved.
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Global sensitivity analysis (SA) allows decision makers to shar-
pen their view of the problem. As underlined in Helton (2004), SA
should be a fundamental part of any analysis that involves the assess-
ment and propagation of uncertainty. By a global SA, we gain several
insights concerning the input–output mapping, and the key drivers
of uncertainty (Saltelli et al., 2000). When the number of model in-
puts is large, recognising the factors on which to focus resources in
data collection and/or in further modelling efforts becomes crucial
for most effectively managing uncertainty. However, a high num-
ber of model input factors increases the computational burden
(the so-called curse of dimensionality (Rabitz and Alıs�, 1999)). In
such a case, analysts tend to use computationally convenient
methods (non-global) to the detriment of rigour (see the surveys
in Saltelli and Annoni (2010), Saltelli et al. (2011)).

In operations research (OR), the first work addressing global
sensitivity analysis is Wagner (1995), where variance-based sensi-
tivity measures are introduced and discussed. The literature has,
since then, produced several results on the twofold side of amelio-
rating variance-based measures estimation and of proposing new
sensitivity measures. Among the recently introduced sensitivity
measures, the class of density-based is attracting increasing
attention (Borgonovo, 2007; Liu and Homma, 2009; Caniou and
Sudret, 2010) for their ability to overcome certain limitations asso-
ciated with the interpretation of variance-based measures in the
presence of dependencies among the model inputs. However, their
estimation runs the risk of becoming infeasible when the number
of model inputs is large or when the computing time of the model
takes longer than a few minutes.
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In this work, we introduce a novel approach that enables to esti-
mate density-based sensitivity measures directly from the dataset
generated by an uncertainty analysis. Thus, the computational bur-
den is the same as in a traditional Monte Carlo uncertainty propa-
gation. Furthermore, the method is independent of the sampling
generation method (Latin hypercube, quasi-Monte Carlo, etc.).

We show that the proposed method yields also variance-based
sensitivity measures or measures based on alternative separation
metrics (e.g., Kullback–Leibler, Kolmogorov–Smirnov). Our first
step is a formal definition of the estimators for density-based mea-
sures. We rely on the notion of class-conditional densities where a
class is a sub-sample stemming from a suitable partition of the
dataset. We prove consistency theorems that ensure asymptotic
convergence. Numerical experiments reveal a low-sample bias
for density-based methods. This bias is intrinsic to designs based
on replicates or partitioning of the same dataset (Morris et al.,
2008). Our goal is to control numerical noise while keeping the ap-
proach independent of the way the dataset is generated and with-
out requiring additional model runs. We analyse two strategies.
For the class of models in which large sample sizes are within
reach of computational time, we propose a bias-controlling filter
based on the Kolmogorov–Smirnov (KS) test controlled by a dum-
my variable. For computationally intensive models, at finite or
small sample sizes, we discuss a different strategy, namely, the ro-
bust determination of confidence intervals through the bias reduc-
ing bootstrap approach of Efron and Gong (1983), see also Hall
(1992). A numerically demanding test case with analytically
known values of the sensitivity statistics is employed to demon-
strate the strategy.

In developing the designs, we introduce new properties of den-
sity-based sensitivity statistics. In particular, suppose that X and Y
are two random variables. (In a model input/output framework X is
called the independent or input variable while Y is the dependent
or output variable). For the moment-independent measure d intro-
duced by Borgonovo (2007) we show that d(X,Y) = d(Y,X). By this
symmetry, X or Y can indifferently play the role of dependent (or
independent) variable. This finding extends the estimation of glo-
bal sensitivity statistics beyond the traditional model input/output
frame. We discuss a non-functional case study (involving an
alphabet-letter B shape). Results show that by d(X,Y) one unveils
a statistical dependence that would not be appraised by a vari-
ance-based method.

We then challenge the approach by application to the output of
a complex computational code. The code is the simulation model
utilised by NASA and the US Idaho National Laboratory for safety
assessment in the design phase of the next generation of lunar
space missions (Borgonovo and Smith, 2011). The model is compu-
tationally intensive, with 872 uncertain input factors. This high
number often rules out the direct estimation of global sensitivity
measures. However, the proposed strategy enables the estimation
of both density-and variance-based statistics by post-processing
the dataset generated by Monte Carlo simulation of the original
code. One fully exploits the advantage of the proposed design:
computational burden is independent of the number of factors.
Confidence intervals indicate that the sensitivity measures are
accurately estimated, providing analysts with a reliable identifica-
tion of the key drivers of uncertainty. Results also show that uncer-
tainty drivers do not coincide with the key drivers obtained
through a deterministic sensitivity method applied to the same
model. By the simultaneous estimation of variance-based mea-
sures, one also realises that interactions play a notable role in
the input–output mapping (Borgonovo and Smith, 2011).

This paper is organised as follows. Section 2 gives a concise re-
view of global sensitivity analysis. Section 3 proposes some new
results and examples for variance-based sensitivity measures. Sec-
tion 4 defines density-based sensitivity measures and presents
new properties. Section 5 introduces the estimators and proves
convergence and consistency results. Section 6 describes the com-
putational algorithm and introduces a bias-controlling filter. Sec-
tion 7 discusses numerical results for analytical test cases and
the determination of confidence intervals of the sensitivity mea-
sures. Section 8 presents extensions to alternative sensitivity mea-
sures. Section 9 discusses the extension to a non-input–output
setting. A full-scale application is studied in Section 10. Section 11
offers conclusions.
2. Estimating global sensitivity statistics: A review

This section offers a review of uncertainty and global sensitivity
analysis (SA), with focus on numerical aspects. Uncertainty analy-
sis (sometimes referred to as probabilistic sensitivity (Hazen and
Huang, 2006)) consists of the steps discussed in Helton (2004).
These steps can be synthesised in the assignment of distributions
to the model input factors followed by propagation into the simu-
lation code via Monte Carlo simulation (see also Helton and Davis,
2003). The first task, distribution assignment, is the crucial step in
ensuring the quality and consistency of results (see Chick, 2001;
Helton, 2004).

Several ways for generating random inputs that follow a given
joint distributions are available, ranging from crude Monte Carlo
to Latin hypercube sampling and quasi-random low-discrepancy
sequences (e.g., Halton, Sobol’, Niederreiter) (Wang, 2006). The in-
put sample is fed into the model to obtain the output distribution.
Global SA is performed after the uncertainty analysis and allows
analysts to obtain additional information about the input–output
mapping (Saltelli and Tarantola, 2002; Oakley and O’Hagan,
2004). Let us introduce the global SA frame. In accordance with
the classical assumptions of Gelfand and Smith (1990), we assume
to have information about the factors probability distribution,
either joint or marginal, with or without correlation, and that this
knowledge comes from measurements, estimates, expert opinion,
physical bounds, output from simulations, analogy with factors
for similar species, and so forth (Saltelli and Tarantola, 2002,
p. 704). Consider x ¼ ½x1; x2; . . . ; xk� 2 X # Rk and y 2 Y# R related
through the function

g : X ! Y; x # y ¼ gðxÞ: ð1Þ

The function g(x) is not necessarily known analytically and is
generally the output of a computer code performing a numerical
simulation. In a global SA, x is a realisation of the random vector
X = [X1, X2, . . . , Xk] on a measurable space ðX ;AÞ, with Xi on
space ðX i;AiÞ. The probability distribution of Xi is denoted by
PXi
ðAÞ ¼ PðXi 2 AÞ;A 2 Ai, and its distribution function by FXi

ðxÞ ¼
PðXi 6 xÞ; x 2 X i. For Y, similar notations apply. Here, PðXi 6 xÞ is
the probability measure that reflects the decision maker’s view
about Xi. As mentioned, it can correspond to a given probability
model or to a mixture of models. Because in this work we are inter-
ested on estimation algorithms, we shall assume, for simplicity, that
the probabilistic distributions are fully specified. The model output
y becomes a random variable Y on ðY;BÞ. Let us recall that the con-
ditional probability of Y given Xi is a map

PY jXi
: B � X i 3 ðY ; xÞ# PY jXi¼xðYÞ 2 ½0;1�; ð2Þ

satisfying the following properties: PYjXi¼xð�Þ is a probability mea-
sure on B, PYjXi¼xðYÞ is measurable in Ai. Associated with PY jXi

are
the conditional cumulative distribution FYjXi

ðyÞ ¼ PY jXi
ðY 6 yÞ and

the conditional density of Y given Xi which is defined using the mar-
ginal density functions fY ðyÞ; fXi

ðxÞ and the joint density function
fXiYðx; yÞ by
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fYjXi¼xðyÞ ¼
fXi Y ðx;yÞ

fXi
ðxÞ ; fXi

ðxÞ > 0;

fYðyÞ; otherwise:

8<: ð3Þ

Before discussing global sensitivity methods, it is useful to recall the
concept of sensitivity analysis setting. A setting is a way of framing
the sensitivity analysis quest in such a way that the answer can be con-
fidently entrusted to a given method (Saltelli et al., 2008, p. 24). The
two main settings are factor prioritisation and factor fixing. They cor-
respond to the identification of the most and least relevant factors,
respectively.

Several global methods have been developed since the 1990s to
address these two settings: screening methods (including the ran-
domised one-at-a-time design of Morris (1991) and sequential
bifurcation techniques (Bettonvil and Kleijnen, 1997; Wan et al.,
2010), see also Kleijnen (2009a) for an overview), non-parametric
or regression-based (Saltelli and Marivoet, 1990; Helton, 1993),
variance-based methods (Sobol’, 1993; Oakley and O’Hagan,
2004), density-based (Park and Ahn, 1994; Chun et al., 2000;
Borgonovo, 2007; Liu and Homma, 2009) and expected-value-of-
information (EVI) based methods (Oakley et al., 2010). The com-
mon feature of the last three classes of methods is that they are,
on the one hand, the most informative in terms of uncertainty ap-
praisal and, on the other hand, the most computationally intensive.
Let ci be a global sensitivity measure (variance-, density- or EVI-
based). Then, ci is obtained by (i) defining an appropriate inner sta-
tistic (say cjxi) conditional on Xi = xi and (ii) averaging cjxi over Xi.
The corresponding brute force computational cost is

C ¼ k � nint � next þ n; ð4Þ

where k is the number of factors, nint the sample size necessary for
estimating the inner statistic, next the sample size used for the exter-
nal expectation, and n the size of the uncertainty analysis sample, if
needed. For instance, C in Eq. (4) is the cost for estimating EVI sen-
sitivity measures following the algorithm in Oakley et al. (2010). It
is also the cost for a brute-force estimation of variance-based statis-
tics. These statistics are defined as

g2
i ¼

Var½E½Y jXi��
Var½Y� ¼ 1� E½Var½YjXi��

Var½Y� ; i ¼ 1; . . . ; k: ð5Þ

Pearson (1905) named g2
i correlation ratio. Sensitivity measures of

the form of Eq. (5) have been independently introduced as global
sensitivity measures in the 1990s by Sobol’ (1993) in high-dimen-
sional integration, and by Wagner (1995) in operations research.
The difference between the definitions proposed by these two
authors lies in the independence assumption invoked by Sobol’
(1993), and not by Wagner (1995). Both authors, in addition to first
order sensitivity indices introduce the total order indices

gT
i ¼

E½Var½Y jXı̂��
Var½Y� ¼ 1� Var½E½Y jXı̂��

Var½Y� ; i ¼ 1; . . . ; k ð6Þ

where Xı̂ ¼ ðX1; . . . ;Xi�1;Xiþ1; . . . ;XkÞ is the random vector where all
factors are fixed but Xi. Under the condition FXðxÞ ¼

Qk
i¼1FXi

ðxiÞ
(independence assumption), gT

i coincides with the fraction of the
model output variance that persists if all factors are fixed but Xi.
The independence assumption also enables a reduction in computa-
tional burden proven in Sobol’ (1993). Refining results of (Homma
and Saltelli, 1996; Saltelli, 2002), Saltelli et al. (2010) introduce a
design for estimating first and total order variance-based sensitivity
measures at C = k(n + 2) model runs. In the presence of input depen-
dencies, the computational cost increases (Kucherenko et al., 2012).
Researchers have also explored ways for estimating sensitivity mea-
sures at C = n runs of the original model. A first set of strategies con-
sists of utilising model reduction through emulators (also called
metamodels or surrogates). A first review of the literature in design
and analysis of computer experiments is offered in the seminal
work of Sacks et al. (1989b), where contributions as O’Hagan
(1978), McKay et al. (1979), Iman and Helton (1988), and Sacks
et al. (1989a) are analysed. These works have paved the way to sub-
sequent research in the area of metamodelling (or model emulation,
surrogate modelling). We also recall the monograph by Santner
et al. (2003); for recent developments, we refer to the thematic is-
sue edited by Bayarri et al. (2009). For a review on Bayesian ap-
proaches to model emulation we refer to Oakley and O’Hagan
(2004); on smoothing splines ANOVA models, to Gu (2002) and
Ratto et al. (2007); on kriging, to Kleijnen (2008) and Kleijnen
(2009b); on metamodelling through polynomial chaos expansion
to Sudret (2008). In metamodelling, n model runs are used to train
the emulator. The remaining runs of a double-loop design are per-
formed using the emulator in place of the original model. This strat-
egy is investigated in the estimation of variance-based sensitivity
indices by Oakley and O’Hagan (2004), Sudret (2008), Ratto et al.
(2007), and Ziehn and Tomlin (2009), which use Gaussian emula-
tion, polynomial chaos expansion, smoothing splines and functional
ANOVA with orthogonal polynomials, respectively. It is used in the
estimation of density-based sensitivity measures in Ratto et al.
(2009) and Borgonovo et al. (2011). In Ratto et al. (2009) the model
output density is approximated by an Edgeworth series, exploiting
estimates of the first four order moments obtained via the emulator
of Ratto et al. (2007). In Borgonovo et al. (2011), the statistics are
estimated by substitution of the metamodel for the original model.
A notable computational burden reduction can be achieved, if the
emulator fits the original model. However, if training requires a
high number of model runs, the potential advantage diminishes.

The Fourier Amplitude Sensitivity Test (FAST) (Cukier et al.,
1973; Tarantola et al., 2006; Xu and Gertner, 2007) lowers compu-
tational burden at around n model runs for estimating g2

i for each
factor i, without passing through an emulator. The EASI approach
by Plischke (2010) reduces the overall costs C for all factors to n
model runs. The main difference between FAST and EASI is that
FAST requires evaluation of the model according to a specific de-
sign, while EASI is independent of the way in which the dataset
is produced.

3. Some new results on variance-based sensitivity measures

The literature has shown that g2
i is a robust measure of func-

tional dependence. However, some types of functional dependence
are not captured by g2

i as the next result shows (the proof is in
Appendix A).

Proposition 1. Consider a multivariate function of the form

y ¼ f ðx1; . . . ; xkÞ ¼ aðxJÞgðxjÞ þ bðxJ0 Þ; J � fjg � J0

¼ f1; . . . ; kg; ð7Þ

where g(xj) is a function of xj, J and J0 are groups of indices such that
j R J [ J0, J \ J0 = ;, a(�) is a function of the factors in J and b(�) is a func-
tion depending on the remaining factors in J0. Let X = (X1, . . . , Xk) be a
random vector such that (Xj), XJ = (Xi; i 2 J) and XJ0 ¼ ðXi; i 2 J0Þ are sto-
chastically independent groups of random variables. Then, if
E[g(Xj)] = 0, the first order effect of Y = f(X) satisfies g2

i ¼ 0 for all i 2 J.

Proposition 1 states the following. If a set of factors, J, is paired
with one factor j which is independent of the remaining factors and
such that E[g(Xj)] = 0, then g2

i are zero for all i 2 J. Thus, Y is statis-
tically dependent on XJ, but the influence of any factor i in J is not
revealed by g2

i . Proposition 1 holds independently of the functional
forms assigned to a(�), b(�), g(�) and of the choice of the distribu-
tions Fj(�), FJ(�) and FJ0 ð�Þ.

In the global SA literature, a widely studied example of the form
of Eq. (7) is the Ishigami function (Saltelli et al., 2004),
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Y ¼ sin X1 þ 7 sin2 X2 þ 0:1X4
3 sin X1

¼ ð1þ 0:1X4
3Þ sin X1 þ 7 sin2 X2; ð8Þ

with X ¼ ½X1;X2;X3;X4�;X ¼ ð�p;pÞ4 and Xi � U(�p,p) (indepen-
dently uniformly distributed). Here, we have J = {3}, j = 1 and
J0 = {2}. X4 is an additional dummy model input.

The first four plots (a)–(d) in Fig. 1 show estimates of fY(y) (thick
lines) and fY jXi¼xi

ðyÞ for i = 1, 2, 3, 4 given a quasi-Monte Carlo sam-
ple of size 8192. We will discuss the method behind these plots in
Section 5. One notes that X1, X2 and X3 lead to evident modifica-
tions in fY(y). However, if an analyst quantifies the contribution
of X3 to uncertainty by individual contribution to variance, she
would consider X3 as non-influential. In fact, g2

3 ¼ 0 by Proposition
1. However, as Fig. 1c shows, knowing X3 = x3 modifies fY(y). In the
case of the Ishigami function, the influence of X3 can be inferred by
estimation of the total order sensitivity measure gT

i . (The estima-
tion of gT

i from given data is an open issue).
Proposition 1 contains as a particular case the following result found

in Borgonovo and Baucells (2011). That is, for any product function

y ¼
Yk

i¼1

giðxiÞ þ K; ð9Þ

where K is a constant and gi(�) is such that E [gi(Xi)] = 0 and
(X1, . . . , Xk) are independent, the first and total order effects are
non-informative as for all i;g2

i ¼ 0 and gT
i ¼ 1. Thus, for functions

modelled after Eq. (9), one cannot prioritise factors using vari-
ance-based measures (both g2

i and gT
i provide degenerate answers).

However, the issue is solved by complementing variance-based
measures with density-based measures, whose rationale is ex-
plained in the next section.
4. Density-based sensitivity methods: Generalisations and new
results

Let X : ðX;FÞ ! ðX ;AÞ and Y : ðX;FÞ ! ðY;BÞ be two continu-
ous random variables on probability space ðX;F ;PÞ, where X and
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Section 5.

If X = x, then FYjX=x(y) represents the decision maker’s new de-
gree-of-belief about Y. Measuring the separation between FY(y)
and FYjX=x(y) or between fY(y) and fYjX=x(y) is a way to quantify the
effect of fixing X at x on the decision maker’s degree-of-belief. A
wide literature is available on the subject of distribution separation
measurements, whose complete review is outside the purpose of
the present article. We refer to Csiszár (1963) and Glick (1975)
and to the review of Gibbs and Su (2002). We utilise the L1-norm
between densities for the reasons we are to discuss. The separation
is written as

sðxÞ ¼
Z
Y
jfYðyÞ � fY jX¼xðyÞj dy or; with factor i of interest;

siðxÞ ¼
Z
Y
jfY ðyÞ � fYjXi¼xðyÞj dy: ð10Þ

In Eq. (10) the operator
R
Y j � j is a separation measurement in the

sense of Glick (1975). By Scheffé’s theorem (Scheffé, 1947; Devroye
and Györfi, 1985)

sðxÞ ¼
Z
Y
jfYðyÞ � fY jX¼xðyÞj dy ¼ 2sup

B2B
jPY ðBÞ � PY jX¼xðBÞj; ð11Þ

where the sup operation is extended to all sets B in the algebra B of
Y. Eq. (11) implies that instead of measuring the separation of two
distributions utilising the L1-norm (left hand side) one can equiva-
lently use the variational distance (Strasser, 1985). More specifi-
cally, the variational distance in the right-hand side of Eq. (11) is
a generalisation of the Kolmogorov–Smirnov distance dKS and the
discrepancy metric dD (Gibbs and Su, 2002, pp. 420–424). We have

dKS ¼ sup
y2Y
jFYðyÞ � FYjXðyÞj 6

dD ¼ sup
all closed balls A

jPYðAÞ � PY jXðAÞj 6

dd ¼ sup
B2B
jPY ðBÞ � PY jXðBÞj: ð12Þ
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The Kolmogorov–Smirnov distance inspects discrepancy over all
half-rays in Y, the discrepancy metric over all closed balls in B,
while the variational distance in dd considers all sets in B.

In a global SA context, si(x) is conditional on Xi = x. Averaging
over the possible values of si attained by Xi leads us to the following
definition.

Definition 1. Given two random variables X and Y on measurable
spaces ðX ;AÞ and ðY;BÞ, we define the importance of X on Y as

dðY;XÞ ¼ 1
2

E½sðXÞ� ¼
Z
X

fXðxÞsðxÞdx

¼
Z
X

fXðxÞ � sup
B2B
jPYðBÞ � PYjX¼xðBÞjdx: ð13Þ

Note that, by Scheffé’s theorem, it is

dðY;XÞ ¼ 1
2

Z
X

fXðxÞ
Z
Y
jfY ðyÞ � fYjX¼xðyÞjdydx: ð14Þ

We can now prove the following symmetry relationship (see
Appendix A).

Proposition 2. For any X and Y on measurable spaces ðX ;AÞ and
ðY;BÞ, it holds that

dðY;XÞ ¼ dðX;YÞ ¼ 1
2

Z
X�Y
jfXðxÞfY ðyÞ � fXYðx; yÞjdy dx: ð15Þ

Eq. (15) suggests that d is symmetric in X and Y, so that one can
exchange their roles. Therefore, the roles of explanans and
explanandum are not necessarily fixed for d. In a global SA of model
output, where we distinguish between input factors and model
output, this change of viewpoint is not viable. However, when pro-
cessing given data exchanging X and Y is possible and may lead to
an increased confidence in the obtained results (we discuss an
example in Section 9). Furthermore, Proposition 2 has the follow-
ing implication.
Corollary 1. d(Y,X) = 0 if and only if Y and X are independent.

Thus, d(Y,X) = 0 provides an indication of the strength of the
dependence between Y and X, avoiding type I errors.

In the remainder of this section, we explicitly consider Y as the
model output in Eq. (1) and X as the vector of input factors. We fix
one input variable Xi of interest. Then, the importance of factor Xi

on Y is given by

di ¼ dðY ;XiÞ ¼
1
2

E½sðXiÞ�

¼ 1
2

Z
X i

fXi
ðxÞ
Z
Y
jfY ðyÞ � fYjXi¼xðyÞjdy dx: ð16Þ

It can be shown that di possesses additional properties (Borgonovo,
2007; Borgonovo et al., 2011). A first property is normalisation:
0 6 di 6 1. A second is invariance to monotonic transformation:
Suppose that z(y) is a monotonic function of Y. Then, it can be pro-
ven that d(Y,Xi) = d(z(Y),Xi) (Borgonovo et al., 2011). By Proposition
2, we even have d (Y,Xi) = d(z1(Y),z2(Xi)) for monotonic maps z1, z2.

Invariance to monotonic transformation has both numerical (i)
and decision-theoretical implications (ii):

(i) If the model output is sparse or ranges over several
orders of magnitude then analysts might resort to scale-
transformations for improving numerical processing. How-
ever, transferring back results obtained on the transformed
data to the original data is usually not straightforward
(Saltelli and Sobol’, 1995). This problem is circumvented
if the sensitivity statistic is monotonic-transformation
invariant.
(ii) Consider a decision maker who is assessing a von Neumann–
Morgenstern utility function U over Y. Monotonicity of U is a
standard requirement in Economics (Baucells and Sarin,
2007). Any monotonic transformation of Y or of U(Y) pre-
serves the preference structure. Thus, if and only if a sensi-
tivity measure is scale invariant then sensitivity analysis
results hold for all equivalent preference structures (Borgo-
novo and Baucells, 2011). That is, results obtained using Y
hold for any U(Y). Additionally, in many situations assigning
a precise form to U is a cumbersome task (Lichtendahl and
Bodily, 2010). However, when U is assumed monotonic then
sensitivity analysis results are unaffected by imprecisions in
the assessment of U, if one selects a scale invariant sensitiv-
ity measure. Finally, we observe that any sensitivity measure
based upon an f-divergence (Csiszár, 1963) is comprised
within our framework. This is achieved by replacing the
L1-norm with alternative metrics. Among these, an impor-
tant class is represented by the symmetric Kullback–Leibler
divergence,
sKLðxÞ ¼
1
2

Z
Y

fYðyÞ log
fY ðyÞ

fY jX¼xðyÞ
dyþ

Z
Y

fY jX¼xðyÞ log
fY jX¼xðyÞ

fY ðyÞ
dy

� �
¼ 1

2

Z
Y
ðfY jX¼xðyÞ � fY ðyÞÞ log

fXY ðx; yÞ
fXðxÞfY ðyÞ

dy:

ð17Þ
Averaging over X yields the following variant of Shannon’s
information,
dKL ¼ E½sKLðXÞ� ¼
1
2

Z
X�Y
ðfXYðx; yÞ � fXðxÞfYðyÞÞ log

fXYðx; yÞ
fXðxÞfYðyÞ

dydx; ð18Þ

which is symmetric in X and Y, scale invariant and bears close
resemblance to Eq. (15). However, when used for global SA, dKL

encounters some limitations. It has been shown in Borgonovo
et al. (2011) that the ratios in Eq. (18) are not always well-defined,
because in global SA we are frequently faced with a support prob-
lem. dKL is originally conceived within Bayes’ theorem framework
(Soofi, 1994), where the support is always invariant. Furthermore,
analytical case studies have not been developed for Eq. (18) yet.
For these reasons, we focus on the estimation of Eq. (15) in the
remainder of our work.
5. Estimators

In this section, we define an estimator for di. We collect the real-
isations of n i.i.d. copies of the pair (X,Y) in the sample matrix
Z ¼ ððxj;1 . . . xj;k yjÞÞ 2 Rn�ðkþ1Þ. Most of the time we consider a fixed
factor i 2 {1, . . . , k} so that only the n-vectors xi = (xj,i) and y = (yj)
are used in the following discussion. After fixing this generic factor
i we form the scatterplot of xi and y. Next, we partition the xi-axis
of the scatterplot into M classes. The key intuition of our approach
is the following. Instead of considering the density conditional on
Xi = x we consider the conditional density generated by Xi belong-
ing to this class-interval of a suitably chosen partition of X i to ob-
tain any observations conditional to this class. Formally, let
P ¼ fCm; m ¼ 1; . . . ;Mg with

SM
m¼1Cm ¼ X i, Cm \ Cm0 ¼ ;;m – m0 de-

note a partition of X i into M classes. The probability of Xi belonging
to class Cm is given by

PXi
ðCmÞ ¼

Z
Cm

fXi
ðxÞ dx: ð19Þ

By the total probability theorem, the class-conditional density of Y
given Cm � X i is given by
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fY jCm ðyÞ ¼
R
Cm

fY jXi¼xðyÞfXi
ðxÞdxR

Cm
fXi
ðxÞdx

¼ 1
PXi
ðCmÞ

Z
Cm

fXiYðx; yÞdx: ð20Þ

Then, we call the quantity

Sm ¼ SðCmÞ ¼
Z
Y
jfYðyÞ � fY jCm ðyÞjdy; ð21Þ

the class separation induced by Cm � X i. Correspondingly, we define
an approximation of the distributional-importance of Xi for parti-
tion P as

dPi ¼
1
2

X
C2P

SðCÞPXi
ðCÞ ¼ 1

2

XM

m¼1
SmPXi

ðCmÞ: ð22Þ

We have the following result (the proof is in the Appendix).

Theorem 1. Suppose that Xi has a continuous density on X i. Consider

a refining family of partitions Pj ¼ Cj
1; . . . ; Cj

M

n o
;M ¼ 2j, of X i with

C0
1 ¼ X i; Cj

2m�1 [ C
j
2m ¼ C

j�1
m for j > 0, which is finely grained such that

limj!1maxm¼1;...;MPXi
Cj

m

� �
¼ 0 and which has positive mass in each

class such that for all j and m; PXi
Cj

m

� �
> 0. Then limj!1d

Pj

i ¼ di.

Theorem 1 ensures that, as the number of partition classes in-
creases, the class approximation dPi of a density-based sensitivity
measure tends to di. Intuitively, one can explain this result as fol-
lows. For M ? 1, the partition size decreases and, eventually, Cm

collapses to an individual point, which we can call xm. Thus,
SðCmÞ ! SðfxmgÞ ¼ siðxmÞ as M tends to infinity.

Theorem 1 and Eq. (21) lead us to the problem of estimating fY

and fYjCm . We use kernel-density (Parzen, 1962; Devroye and Györfi,
1985). Assume that {(xj,yj); j = 1, . . . , n} is a sample of n pairs of
realisations of Xi and Y. The estimate f̂ Yð�Þ is obtained from a ker-
nel-density estimation of all realisations {yj; j = 1, . . . , n} while
f̂ YjCm ð�Þ is obtained from a kernel-density estimation of the subset
fyj; xj 2 Cmg. For a given kernel K(�) and given bandwidths a,am,
m = 1, . . . , M these kernel-density estimates are

f̂ Y ðyÞ ¼
1
n

Xn

j¼1

1
a

K
y� yj

a

� �
;

f̂ Y jCm ðyÞ ¼
1

nm

X
j:xj2Cm

1
am

K
y� yj

am

� �
:

ð23Þ

Here, nm ¼
P

j:xj2Cm
1 counts the number of realisations in class Cm of

P. With a given set of ‘ quadrature points f~yj; j ¼ 1; . . . ; ‘g, Eq. (23)
allows us define the point-wise separation of the estimated
densities,

sm;j ¼ f̂ Yð~yjÞ � f̂ Y jCm ð~yjÞ; j ¼ 1; . . . ; ‘; m ¼ 1; . . . ;M: ð24Þ

The numerical integration of sm,j may be performed using the trap-
ezoidal rule, yielding class separation estimates

bSm ¼
1
2

X‘�1

j¼1
ðjsm;jþ1j þ jsm;jjÞð~yjþ1 � ~yjÞ; m ¼ 1; . . . ;M: ð25Þ

As an example, Fig. 1e) shows estimates bSm for all k = 4 factors of the
Ishigami model using M = 32 partitions.

Definition 2. We call the quantity

d̂i ¼
1

2n

XM

m¼1
nm
bSm ð26Þ

an estimator of di on the partition P ¼ fCm; m ¼ 1; . . . ;Mg with
quadrature points f~yj; j ¼ 1; . . . ; ‘g for sample size n ¼

PM
m¼1nm.

It is now necessary to prove that d̂i is a consistent estimator of di

for two reasons. First, if the model allows the adoption of an esti-
mation strategy based on increasing sample sizes, then we need
to be ensured that d̂i tends to di as the sample size increases.
Second, if the model allows only a fixed budget of model runs, then
we need to assess confidence intervals around d̂i at finite or small
sample sizes. Suppose that we use bootstrap. We need to prove
that d̂i is consistent for ensuring that the bootstrap estimator is
also consistent. The following holds (see Appendix A).

Theorem 2. d̂i is a consistent estimator of di, i.e., limn;M;‘!1d̂i ¼ di.
We note the complementarity of Theorems 1 and 2. The former
states that a strategy based on partitions leads to a consistent esti-
mator of di provided that class densities are consistently estimated.
The latter ensures that this is the case if one combines the trapezoi-
dal rule and kernel-density, under the assumptions of convergence
of the kernel-density estimators (see Appendix A; we also refer to
Devroye and Györfi (1985); Härdle (1990)).

Definition 2 can be turned into an estimation strategy. Fixing a
factor i, we follow the procedure described below for estimating
di = d(Y,Xi).

1. (a) Performing a traditional uncertainty analysis (with any sam-
ple generation method), if one is investigating the output Y
of a computer code; or

(b) setting the dependent variable Y among the variables of a
given dataset, if one is not in a model input/output
framework.

2. Partitioning the dataset to form the classes Cm;m ¼ 1;2; . . . ;M.
3. Approximating the densities conditional to these classes via

kernel smoothing, Eq. (23).
4. Estimating di in accordance with Eq. (26).

We observe:
About Step 1: no restrictions apply on the sampling procedure

(simple random, quasi-Monte Carlo or Latin hypercube sampling)
used for obtaining the realisations from the random vector X.

About Step 2: several partition strategies are available (Plischke,
2012). A way which has been proven effective for the authors is
partitioning the data by factor ranks, forming classes of nearly
the same size. Numerical experiments have shown that increasing
such equally sized partitions beyond 50 classes has negligible ef-
fect on the estimation accuracy.

About Step 3: knowledge of the conditional distributions can be
used for extracting additional information from the code. In fact,
plotting the unconditional model output density against the condi-
tional densities provides a direct way for assessing whether and
how fixing a factor modifies the model output density, see also
Section 2.

Finally, a remark on the presence of discrete random variables.
If Xi is continuous then the partition into classes can always be cho-
sen in such way that nPXi

ðCmÞ ¼ nm. If Xi is discrete then one can ex-
ploit knowledge of the values assumed by Xi to set the proper
partitions by having the class Cm coinciding with the mth realisa-
tion of Xi. Then, we are in the particular case in which conditioning
on Xi 2 Cm is equivalent to conditioning on Xi ¼ xm

i . As far as the
continuity of Y is concerned, using the Dirac-d density symbol
the symbolic definitions stated so far can also be extended to the
case of discrete Y. However, if Y is discrete then the probability
density function is replaced by a probability mass function and
there is no need for kernel smoothing (one can use a simple abso-
lute value difference between the conditional and unconditional
probability mass functions). Of course, estimation accuracy is then
dependent on the accuracy of the corresponding histograms. A de-
tailed discussion is out of the scope of the present work. Because
many realistic computer codes have continuous output, and for
the sake of simplicity, we shall retain focus on continuous random
variables in the remainder.
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6. Point estimation: A bias reduction filter

Consider a strategy based on estimating d̂i at increasing sample
sizes and stopping the algorithm when the difference in point esti-
mates at two next sample sizes is smaller than a predetermined
� > 0. Applying the steps described in Section 5 to the Ishigami
example in Eq. (8), we obtain the conditional densities and separa-
tions which have been presented in Fig. 1 and the following values
for d̂1 ¼ 0:208; d̂2 ¼ 0:391; d̂3 ¼ 0:156; d̂4 ¼ 0:060. X2 is the most
influential factor, followed by X1, X3 and X4. This result is in agree-
ment with the intuition generated by Fig. 1. However, d4 is not
equal to zero. In fact, when applied to Eq. (8), a strategy based
on increasing sample sizes produces the results in Fig. 2 (continu-
ous lines) for estimating d4. To study the numerical variability of
the estimates, 4 repetitions are used, each with a partition size of
M = 10 and ‘ = 110 quadrature points for evaluating the inner
integral.

Because d4 = 0, we would expect d̂4 to tend to zero as n increases
(Theorem 2). However, while this is the case, convergence is slow
and, at any finite n; d̂4 – 0. There are two reasons for this bias in
uninfluential factors: the use of kernel-density estimates and the
partitioning of the dataset. Kernel-density introduces numerical
noise due to its intrinsic numerical approximation. For a dummy
parameter, partitioning of the XjY scatterplot and conditioning
leads to the removal of a number of randomly chosen realisations.
This removal creates residuals that do not cancel out when formingbSm which leads to a spurious contribution to terms in the addition
of Eq. (26). These spurious additions generate a non-null (albeit
small) d̂. This problem is intrinsic to designs based on replicates
and is also observed for variance-based methods (Morris et al.,
2006, 2008; Plischke, 2010). Morris et al. (2008) obtain a non-
biased estimator of g2

i by a sampling plan based on orthogonal ar-
rays. However, the bias is unavoidable if the estimation design
stays independent of the sample generation method (Plischke,
2010). Because we require independence of the sampling genera-
tion method and no additional model runs (this requirement is
the main difference between our approach and the one of Oakley
et al. (2010)), we propose a different approach to control unwanted
numerical influences in a point estimation strategy. The rationale
is to profit by information about the conditional and unconditional
distributions of Y, yielded by Step 3 of Section 5 and to utilise a sta-
tistical test to check whether the difference in FY(y) and FYjCm ðyÞ is
significant. Because its statistic can be related to d̂i, the (asymp-
totic) two-sample Kolmogorov–Smirnov (KS) test (Conover, 1999)
appears as a natural selection for this approach. Let bF YðyÞ denote
the empirical distribution functions of Y and bF YjCm ðyÞ the class-
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Fig. 2. Computation of d with acceptance level for factor X4 of the Ishigami function.
based empirical conditional distribution function. Then, the contri-
bution of class Cm to d̂i is insignificant at level a if

max
y2Y
jbF YðyÞ � bF Y jCm ðyÞj 6 Ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ 1

nm

s
; ð27Þ

holds where Ka is the upper a-quantile of the Kolmogorov distribu-
tion, n is the overall sample size and nm the subsample size of class
Cm. The fact that subsamples are used for describing YjCm introduces
ties into the pooled sample. In the presence of ties the Ka statistic is
conservative (Nikiforov, 1994). This problem can be avoided as fol-
lows. Instead of using the observations directly, we use the avail-
able kernel density estimates of Eq. (24) to resample from smooth
approximations of the cumulative distributions. This adds one addi-
tional calculation in Step 4. Using the trapezoidal quadrature rule
for integrating the difference of the densities, Eq. (27) is then re-
placed by

max
j¼1;...;‘�1

Xj
j¼1

ðsm;j þ sm;jþ1Þð~yjþ1 � ~yjÞ
�����

����� 6 2Ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ 1

nm

s
: ð28Þ

This test statistic may be further simplified. For empirical densities
and empirical cumulative distributions Eq. (12) immediately yields
2maxy2YjbF YðyÞ � bF Y jCm ðyÞj 6 bSm. Hence if

bSm 6 2Ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ 1

nm

s
ð29Þ

then the Kolmogorov–Smirnov test in Eq. (27) is satisfied. Note that
Eq. (29) is conservative compared to Eq. (27), but it requires no
additional calculations. If the contribution of class Cm is deemed
insignificant by either of the tests in Eq. (28) or (29), we can replacebSm with 0 avoiding the summation of a spurious term in Eq. (26). To
set a rejection level a in Eq. (27) or Eq. (29), we can utilise a dummy
variable and exploit our knowledge of the fact that it is uninfluen-
tial. Or, we can even do more, and compute for each factor the sig-
nificance level at which the KS test would reject the conditional
contributions of all the classes Cm deeming it uninfluential. Thus,
the significance of the KS test can be endogenously set. For example,
in the Ishigami function of Fig. 1 at n = 8192 quasi MC realisations,
using Eq. (29) the dummy factor has an acceptance level of 0.759
while the other three parameters have at least 0.995. Hence a
threshold greater then or equal to 1 � a = 0.76 will effectively elim-
inate the influence of the dummy parameter. Fig. 2 displays the re-
sults for the Ishigami function, with the test implemented in
accordance with Eq. (29) (dash-dotted lines) and with the test
implemented by Eq. (28) (dashed lines). Both variants of the KS test
effectively eliminate numerical noise and produce a null line. An
alternative bias-removal method through bootstrapping is dis-
cussed in the next section.

7. Confidence bounds at finite sample sizes: Estimators and
numerical experiments

When models require virtually no time to run (much like meta-
models), the strategy of estimating d (and also g2

i Þ by application of
the steps in Section 5 and controlling the bias through the KS test
as sample sizes increases is within computational reach. This is of-
ten the case of models used in business planning, decision analysis
(in Oakley et al. (2010) a sample of size 250,000 is used) and, fre-
quently, in reliability analysis (Borgonovo and Smith, 2011).

For other models, especially the ones utilised in the physical
and environmental sciences, the total budget of model executions
might be limited by a long execution time. At small sample sizes,
one needs to account for imprecision in the estimates. In this re-
spect, we note that determining the degree of confidence in the
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estimation of global sensitivity measures has not been subject of
extensive research so far, with practically all works addressing
strategies based on increasing sample sizes.

For maintaining the confidence assessment in a post-processing
mode, the literature offers us two main methods: the bootstrap
and the jackknife (Shao and Tu, 1995; Hall, 1992; Efron and Tibsh-
irani, 1993). The authors have performed several experiments for
the assessment of confidence intervals with both methods. To
our purposes, the bias-reducing bootstrap estimator of Efron and
Gong (1983) has revealed as the most efficient one and it is subject
of this section. For further information on the utilisation of the
bootstrap in simulation, we refer to Kleijnen and Deflandre
(2006) and van Beers and Kleijnen (2008).

Let �d	 be the average of the moment-independent measure
estimates derived from B bootstrap replicates of the given observa-
tions. Here, each replicate is obtained by drawing a sample of n
realisations from the n available observations, with replacement.
B is also called bootstrap sample size (Efron and Tibshirani,
1993). A bootstrap estimate of the bias of d̂ is given bydbiasðd̂Þ ¼ �d	 � d̂. Then, one obtains the bias-reducing bootstrap
estimate of d:

^̂d ¼ d̂� dbiasðd̂Þ ¼ 2d̂� �d	: ð30Þ

By the theory of bootstrap, one knows that ^̂d is a consistent estima-
tor of d, provided that d̂ is. Consistency of d̂ is ensured by Theorem 2.
By construction (Efron and Gong, 1983), an approach based on the
statistic in Eq. (30) is bias-reducing, see also Hall (1992). Thus,
the statistic in Eq. (30) represents an alternative bias-reducing
strategy with respect to the strategy in Section 6. Furthermore,
we can utilise the distribution of 2d̂� �d	 for assessing confidence
in the estimates. This is particularly relevant at small sample sizes.

All numerical experiments in the remainder of this section are
performed without any KS cut-off threshold. We start with the
Ishigami function example, Eq. (8), considering the inactive vari-
able X4. Results at increasing sample sizes are displayed in Fig. 3.
Here, the squares represent the point estimates d̂4, the whiskers
the bootstrap distribution of 2d̂4 � d	4, and the circles the corre-
sponding ^̂d4. The bootstrap sample size is B = 500. One observes
that the point estimates d̂4 slowly decrease from 0.04 to 0.02, as
the sample size increases from 512 to 16,384. Conversely, ^̂d4 is
comprised within �0.01 and +0.01 at all sample sizes, i.e., it is at
least one order of magnitude lower than d̂4. To conduct further
analyses, we implement an analytical albeit computationally
intensive example constituted by a product model. We offer first
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Fig. 3. d̂4 Point estimates (squares) and corresponding bootstrap distribution using
the estimator in Eq. (30) (boxplots), for the inactive variable of the Ishigami
function.
a general result for variance-based measures for this class of func-
tions (see Appendix for the proof).

Proposition 3. Suppose that X = (X1, . . . , Xk) is a random vector with
k independently distributed components. Then the first order effects of
Y ¼

Qk
i¼1giðXiÞ with gi : X i ! R such that E[gi(Xi)] – 0 are given by

g2
i ¼

E½Y �2

Var½Y � �
Var½giðXiÞ�
E½giðXiÞ�2

: ð31Þ

From a historical viewpoint, Proposition 3 generalises results in
Goodman (1962). It is also related to results in Owen (2003). In the
remainder of this section, we consider the input–output mapping

Y ¼
Yk

i¼1

Xai
i ; ð32Þ

where X = (X1, . . . , Xk) is a random vector of independently log-nor-
mally distributed factors with densities

fiðxi;xi; niÞ ¼
1ffiffiffiffiffiffiffi

2p
p

nixi

exp�1
2

logðxiÞ �xi

ni

� 	2

; i ¼ 1; . . . ; k: ð33Þ

We utilise k = 21 factors with xi = 1 and ni = 1, i = 1, 2, . . . , 21, and
a1. . .7 = 4, a8. . .14 = 2, a15. . .21 = 1. The 21 factors are then divided into
three groups of high, moderate and low importance. Analytical val-
ues are obtained by implementing Proposition 5 of Borgonovo et al.
(2011) in a symbolic mathematical software (Mathcad in our case).
This yields d 1. . .7 = 0.112, d8. . .14 = 0.053 and d15. . .21 = 0.026.

By these parameter choices, one obtains the following analytical
values of the relevant moments for Eq. (31): E½Y �2 ¼ 2:52 � 10106;

Var½Y � ¼ 6:37 � 10212; E½X4
1�

2 ¼ 2:649 � 1010; Var½X4
1� ¼ 2:35 � 1017.

Note the extremely large value of Var[Y], which leads to
ĝ2

i ¼ 0; i ¼ 1;2; . . . ;21, for all practical purposes. The reason is
readily explained. The map X ´ Y in Eq. (32) is highly non-additive.
Hence, individual contributions are negligible in the functional AN-
OVA decomposition of Y. Under independence assumption, the first
terms of this decomposition are given by the correlation ratios g2

i

(Bedford, 1998).
Let us now come to numerical results. We generate samples by

the quasi-Monte Carlo subroutine of SimLab (2011) of varying
sizes, from n = 512 to n = 65,536. By propagating the sample
through the model, we obtain the corresponding model output val-
ues, y. As a consequence of the extremely large value of Var[Y], y is
sparse. For instance, at n = 65,536, the values of y span 42 orders of
magnitude (from 15 to 3.4 � 1043). Such a sparsity impairs a direct
application of any global sensitivity estimation procedure, unless
one resorts to monotonic transformations to reduce numerical
noise. (The use of transformations in sensitivity analysis is dis-
cussed in Saltelli and Sobol’ (1995) and Ratto et al. (2009)). Com-
puting di on Y in Eq. (32), on loga(Y) (logarithmic transformation)
or on the cumulative distribution of Y (rank transformation) leaves
di invariant. However, such a transformation is not applicable for
estimating g2

i . By the log-transformation the model structure
changes from multiplicative –

Q21
i¼1Xai

i – to additive –
P21

i¼1ai log Xi –
and g2

i becomes

g2
i ¼

a2
iP21

i¼1a2
i

: ð34Þ

Eqs. (31) and (34) imply the following: any estimator of g2
i applied

to log-transformed data for the model in Eq. (32) is distorted.
By steps 2–4 in Section 5, we obtain the following results for the

point estimates d̂i of di. Fig. 4 shows that d̂i tends to the respective
analytical value di (marked by dashed lines) for all factor groups as
n increases. This is consistent with the results of Section 5. Figs. 5
and 6 report the results of bootstrapping the model in Eq. (32) with
B = 1000 replicates. To highlight the variation within the bootstrap
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estimates, the data used to create the box-plots are based on all
bootstrap replicates of 2d̂� d	.

Fig. 5 reports results at sample sizes from 512 to 2048. It shows
that the analytical values are always comprised within the boot-
strap distributions. Especially at the lowest sample sizes
(n = 512), ^̂di are less sparse around the analytical value than the
corresponding bdi shown in Fig. 4. Fig. 6 displays results for the dis-
tributions of ^̂d of the three factor groups obtained when n varies
from 512 to 65,536. It shows that the confidence intervals shrink
towards the analytical value as n increases. Note that, at n = 2048
there is no more overlapping among the distributions of the impor-
tance measures of most and least relevant factors. Thus, this sam-
ple size is sufficient for the factor prioritisation setting, even in the
presence of such computationally challenging model. Starting at
n = 16,384, the importance measures of the three factor groups
are neatly separated.
8. Extensions: Estimating alternative sensitivity measures

The sensitivity measures presented in Section 5 are based on
the estimation of the conditional densities of Y given Xi. Then, it
is readily observed that knowledge of fY jXi¼xi

ðyÞ yields knowledge
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Fig. 5. Distributions of ^̂d obtained with 1000 bootstrap replicate
of all conditional moments of Y given Xi. Here, the expectation of
Y conditioned on Xi is given by

E½YjXi ¼ x� ¼
Z
Y

yfY jXi¼xðyÞdy: ð35Þ

Now, if we consider the weighted L2-distance of E[Yj Xi = x] from
E[Y] then we obtain the numerator of Eq. (5):Z Z

ðyfYjXi¼xðyÞ � yfY ðyÞÞdy
� �2

fXi
ðxÞdx ¼

Z
ðE½YjXi

¼ x� � E½Y�Þ2fXi
ðxÞdx ¼ Var½E½YjXi��: ð36Þ

Instead of estimating gi from the knowledge of the conditional first
central moment using kernel density estimates of Eq. (23) via Eq.
(36), we can also estimate Eq. (5) via correlation ratios (Pearson,
1905; Plischke, 2012) by directly counting out the values. In this
case, we rely on the same partition as for d̂i. The correlation ratio
estimator is then obtained by using the variance between classes,

�ym ¼
1

nm

X
j:xj2Cm

yj; ĝ2
i ¼

PM
m¼1nmð�ym � �yÞ2Pn

j¼1ðyj � �yÞ2
: ð37Þ

Finally, as discussed in Section 4, knowledge of the conditional den-
sities also allows one to estimate any sensitivity measure based on
alternative metrics to quantify the separation between fY(y) and
fYjXi¼xi

ðyÞ (see Eq. (18)). Hence, also the importance measures intro-
duced in Park and Ahn (1994) based on the Kullback–Leibler diver-
gence, or in Chun et al. (2000) based on Minkowski’s distance of
order 2 are subsumed within the present framework. Note that
Eq. (28) may also serve as a sensitivity measure based on the
Kolmogorov–Smirnov distance (Borgonovo and Baucells, 2011).
Moreover, the expected-value-of-information statistic falls within
the present framework. Ongoing research is addressing its estima-
tion through a single loop (Strong et al., 2012).

9. Letter B: A non-functional relation

Section 4 has discussed that the sensitivity measures proposed
in this work can be estimated in a non-input–output framework.
The general intuition is that a sensitivity index can be associated
with a scatterplot, as an indicator coding information about the
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s at sample sizes (a) n = 512, (b) n = 1024, and (c) n = 2048.



−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Distribution of δ
^̂

 with 1000 replicates for increasing sample sizes

 factor group

δ̂^

high medium low

  512
 1024
 2048
 4096
 8192
16384
32768
65536

Fig. 6. Bootstrap distributions of 2d̂� d	 for the three factor groups with B = 1000 replicates for n = 512 to 65536. In the whiskers-plots, � denotes the median.

E. Plischke et al. / European Journal of Operational Research 226 (2013) 536–550 545
dependence of the associated random variables, see also Ratto et al.
(2009). Suppose that one is provided with the scatterplot of Fig. 7a
which resembles Latin alphabet letter B. It is generated by a sam-
pling-rejection method. Thus, there is no functional input–output
relationship between the random variables on the X–Y axis. Fig. 7b
shows the product of the marginals obtained by partitioning the
graph in Fig. 7a with horizontal and vertical stripes (see Section 5).
One notes that this product of marginals differs from the original
plot, signalling a statistical dependence between X and Y. In fact,
by partitioning the X-axis and estimating the conditional densities,
we obtain d̂ðX;YÞ ¼ 0:288. We now perform a further test, switching
the roles of X and Y. Then also d̂ðY;XÞ ¼ 0:288 holds. Indeed, by Prop-
osition 2 theses values should coincide. The discontinuities of the
densities associated with letter B were dealt with by manually
selecting a bandwidth. For the scatterplot in Fig. 7, one can also com-
pute Pearson’s correlation ratio g2

i using Eq. (37), see Section 8. We
obtain g2

X 
 0. Because the acceptance area is symmetric in Y, the
data yield an almost constant conditional expectation. Note that
by g2

X 
 0 the decision maker would (erroneously) infer that there
is no dependence between X and Y (type-I error). Conversely, a
dependence is present because the joint density is different from
the product of the marginals, what is captured by the non-null value
of d(X,Y) (This result is similar to the one obtained in the case of fac-
tor X3 of the Ishigami test function, where, however, a traditional in-
put/output functional relationship exists, see Section 2).
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10. Application: Uncertainty management in the design phase
of a lunar space mission

In this section, we discuss the application of the previous find-
ings in a realistic decision support application. The model under
investigation has been developed by a team of NASA’s and Idaho
National Laboratories risk experts to corroborate the risk assess-
ment of lunar space missions in accordance with NASA’s Risk
Assessment Procedures (Stamatelatos et al., 2002).

The mission is modelled as an 8-phase process (see Fig. 8), from
launch to orbit around the moon, to astronauts activity on lunar
soil to return to earth. For a detailed description of the phases,
we refer to Borgonovo and Smith (2011). For each phase, the model
provides an accurate description of all engineering systems and
activities involved in accordance with the prescriptions of NASA
(2005). To our purposes, let us assume that the model is a black-
box processing k = 872 uncertain input factors. This high number
of factors makes it crucial to determine which factors analysts need
to focus resources in data collection and further modelling efforts
(areas where to intervene when). We then investigate whether this
information can be gathered from a dataset generated by quasi-
Monte Carlo uncertainty propagation through the model. The sam-
ple of the dataset is of size 65,536 � 873, where n = 65,536 is the
number of realisations and 873 is split into k = 872 input factors
plus the model output.
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Fig. 8. Phases of the lunar space mission as simulated in the model.
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Note that, for this model the cost of appraising di through a dou-
ble-design is 872 � nint � next + n (Castaings et al., 2012). Even if a low
value of next was used (say 4 as in Castaings et al. (2012)), the cost
would rapidly become prohibitive. As a reference, at nint = 65,536,
C 
 230,000,000 model runs are required. Similarly, for g2

i , if one
assumes independence and utilises the result in Saltelli et al.
(2010) one obtains C 
 57,000,000 model runs at nint = 65,536.
Such high C, which is determined by the high number of factors,
would impair the identification of key drivers of uncertainty, be-
cause of the long computational time and of memory limitations.
Conversely, by the proposed approach it is C = 65,536. The total
time required to process the dataset is around 600 s on a personal
computer. Fig. 9 displays the results of Step 3 of the algorithm pro-
posed in Section 5. It reports the distributions of the model output
obtained by conditioning on X748, X152, X143, X713, X7 and X88 (this is
a subset of the 872 factors).

Fig. 9 allows us to visually appreciate that Y is statistically influ-
enced by factors X748, X152 and X143 in a stronger fashion than by
factors X713, X7, and X88.

In Step 4, (see Section 5), d̂i and ĝ2
i are determined. We discuss

these results in conjunction with the assessment of confidence
intervals through the estimator in Eq. (30). Fig. 10 shows that at
n = 65,536 the confidence intervals are non-overlapping for both
the most important and least relevant factors. Thus, information
on the key drivers of uncertainty is reliable. At the lowest sample
size of n = 512 these factors are still identified as the most important
ones, although there is a slight overlapping among the distribution
of ^̂d of X152 and both X713, X7. However, at n = 1024 there is no over-
lapping. Thus, in a factor fixing setting, already at n = 1024 one can
conclude that factors X713, X7 and X88 do not deserve priority when
compared to factors X748, X152, X143. The simultaneous estimation
of di andg2

i , i = 1, 2, . . . , 872 provides analysts with additional crucial
insights. Fig. 11 displays d̂i and ĝ2

i ; i ¼ 1;2; . . . ;872 Overall, the
agreement about the key drivers of uncertainty is high, although
not perfectly coincident. In particular, the value of the correlation
coefficient on ranks is qRank

d;g ¼ 0:86, while the value on the corre-
sponding Savage scores (SS) (Iman and Conover, 1987) is
qSS

d;g ¼ 0:89. By construction, these values indicate that the disagree-
ment concentrates mostly on the non-relevant factors. Also, results
reveal that 479 variables are associated with null values of both d̂i

and ĝ2
i . To further corroborate this finding, one has available (and

can examine) the results of the KS-test filter for all partitions and
all factors. The KS-test systematically shows that these factors have
no influence on the model output. This result is in agreement with
the findings in Borgonovo and Smith (2011), where a deterministic
method is applied to the present model.
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Fig. 11 shows that factors X143, X152 and X748 are associated with
global sensitivity measures outstanding over the remaining ones
both according to di and g2

i . However, X748 ranks third with vari-
ance-based sensitivity measures, while ranking first with di. The
reason is functional dependence and, in particular, the presence
of interactions. By computing

Pk
i¼1ĝ2

i one understands whether
interactions matter in the model response. In our case, it isP872

i¼1 ĝ2
i 
 0:42. Thus, individual effects account for around 42% of

the model output variance. This difference highlights the active
role of interactions in determining the model behaviour. We know
that interaction effects are not captured by g2

i . g2
i does not account

for the importance of X782 associated with its interactions with the
remaining factors. This finding is in agreement with the analysis of
interactions performed by Borgonovo and Smith (2011) for the
same model employing a deterministic design (finite change sensi-
tivity indices). Such design delivers useful information on mainte-
nance and inspection policies, but does not aim at producing
information on uncertainty drivers. Indeed, the very low value
(0.08) of Savage score correlation between the ranking induced
by di and finite change sensitivity indices confirms the intuition
that deterministic methods ought not to be utilised as surrogates
of global methods for uncertainty analysis purposes. However, fac-
tor X152 represents a notable exception. It is ranked among the
three most important factors by all methods (d̂; ĝ2
i and the finite

change sensitivity indices). This fact suggests that X152 indeed de-
serves priority in further data collection and modelling efforts.
11. Conclusions

This work has presented a new strategy for estimating global
sensitivity measures from given data. We have defined new esti-
mators for density-based statistics and proved their consistency.
Numerical aspects have been analysed in detail, with the introduc-
tion of a bias-reduction strategy as well as the determination of
confidence bounds through bootstrapping. The method has the fol-
lowing advantages. It allows a notable reduction in computational
burden, making the estimation cost independent of the number of
factors. Thus, it is appropriate in the factor prioritisation and factor
fixing settings for models with a high number of inputs. It allows
for the estimation of both distribution-based sensitivity measures
and of sensitivity measures that look at contributions to a specific
moment. Besides being equipped with a wide range of information,
analysts avoid type-I errors, because d unveils statistical depen-
dencies that would not be captured using variance-based statistics.
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The strategy has been applied to the dataset generated by an
872-factor model developed for NASA’s risk assessment of lunar
space missions. A reliable determination of the key drivers of uncer-
tainty is obtained. Given the high number of factors, such informa-
tion is particularly relevant in helping analysts redirect attention
and resources in information collection and further modelling.

Finally, a note on future research. Because our approach is based
on given data, the effect of the choice of the input factor distribu-
tion can be tested by mixing our approach with the input sample
reshaping method of Beckman and McKay (1987).
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Appendix A. Mathematical proofs

In this appendix we gather the proofs of the presented mathe-
matical results.

Proof of Proposition 1. Consider i 2 J and Eq. (7). By additivity of
the expectation, it is

E½Y jXi� ¼ E½aðXJÞgðXjÞjXi� þ E½bðXJ0 ÞjXi�: ðA:1Þ

Then, as Xi is independent of Xj and XJ0 ,

E½Y j Xi� ¼ E½aðXJÞ j Xi�E½gðXjÞ� þ E½bðXJ0 Þ�: ðA:2Þ

Because E[g(Xj)] = 0, Eq. (A.2) becomes E½Y j Xi� ¼ E½bðXJ0 Þ�. Thus,
Var{E[YjXi]} = 0. Hence, we have g2

i ¼ 0 for all i 2 J. h
Proof of Proposition 2. By Eq. (14), and by the properties of inte-
grals one gets:

dðY;XÞ ¼ 1
2

Z
X�Y
jfY ðyÞfXðxÞ � fXðxÞfYjX¼xðyÞjdy dx: ðA:3Þ

By Eq. (3), one can write:

dðY;XÞ ¼ 1
2

Z
X�Y
jfXðxÞfY ðyÞ � fXYðx; yÞjdy dx: ðA:4Þ

Eq. (A.4) is symmetric in X and Y, so that d(Y,X) = d(X,Y). h
Proof of Corollary 1. By definition of independence between
random variables we have fXY(x,y) = fX(x)fY(y). Hence, if Y is inde-
pendent of X then d(X,Y) = 0 follows straightforwardly. Conversely,
assume that d(X,Y) = 0. Then, we get by Eq. (15),R
X�Y j fY ðyÞfXðxÞ � fXðxÞfYjX¼xðyÞ j dy dx ¼ 0. Note that the following

equalities are meant in an almost everywhere sense, as it is usual
in measure theory. Because of the absolute value, the integral is
null if the integrand is, i.e., jfY(y)fX(x) � fX(x)fYjX=x(y)j = 0. Thus,
fY(y)fX(x) = fX(x)fYjX=x(y) = 0. Hence, d = 0 implies independence,
since the product of the marginal densities almost surely equals
the joint density and densities are almost surely uniquely deter-
mined (Schürger, 1998). h
Proof of Theorem 1. The main idea of the proof is already used for
Eqs. (A.3) and (15). For ease of notation, we set X ¼ Xi;X ¼ X i and
d = di for a given factor i of interest. We first note the following aux-
iliary result. For disjoint sets C; C0 2 X we have for C0 ¼ C [ C0

fY jC0 ðyÞ ¼ fY jC[C0 ðyÞ ¼
PXðCÞfY jCðyÞ þ PXðC0ÞfY jC0 ðyÞ

PXðCÞ þ PXðC0Þ
¼ hfYjCðyÞ þ ð1� hÞfYjC0 ðyÞ; ðA:5Þ

which is a weighted average with h ¼ PX ðCÞ
PX ðC0Þ. We now consider the

class-conditional separation Sj
m ¼

R
Y jfYðyÞ � fY jCj

m
ðyÞjdy. Using Eq.

(A.5), the refinement strategy and the triangle inequality, yields

Sj
m ¼

Z
Y
jfYðyÞ � fY jCjþ1

2m�1
[Cjþ1

2m
ðyÞjdy

¼
Z
Y
jhj

m fY ðyÞ � fY jCjþ1
2m�1
ðyÞ

� �
þ 1� hj

m

� �
fY ðyÞ � fY jCjþ1

2m�1
ðyÞ

� �
jdy

6

Z
Y

hj
mjfYðyÞ � fY jCjþ1

2m�1
ðyÞj þ 1� hj

m

� �
jfY ðyÞ � fY jCjþ1

2m�1
ðyÞj

� �
dy

¼ hj
mSjþ1

2m�1 þ 1� hj
m

� �
Sjþ1

2m ;

ðA:6Þ

with hj
m ¼

PX C
jþ1
2m�1ð Þ

PX C
j
mð Þ

. Hence we obtain for the discrepancy measure

2djþ1 ¼
X2jþ1

m¼1

PX Cjþ1
m

� �
Sjþ1

m

¼
X2j

m¼1

PX Cj
m

� �
hj

mSjþ1
2m�1 þ 1� hj

m

� �
Sjþ1

2m

� �

P
X2j

m¼1

PX Cj
m

� �
Sj

m ¼ 2dj: ðA:7Þ

As Sj
m 6 2 for all m and j, the sequence (dj) is bounded by 1 and

monotonically increasing. Therefore it converges to a limit. Consider
an arbitrary partition P of M classes,

dP ¼
1
2

XM

m¼1

Z
Y

fYðyÞ � fY jCm ðyÞ
�� ��dy

Z
Cm

fXðxÞdx

¼ 1
2

XM

m¼1

Z
Y

Z
Cm

fXðxÞfY ðyÞ � fXYðx; yÞdx
���� ����dy

¼ 1
2

XM

m¼1

Z
Y

fY ðyÞj
Z
Cm

fXðxÞ � fXjY¼yðxÞdxjdy: ðA:8Þ

If fX(�) � fXjY=y(�) is continuous on Cm the mean value theorem shows
that there exists a sequence xm 2 Cm;m ¼ 1; . . . ;M such that

dP ¼
1
2

Z
Y

fYðyÞ
XM

m¼1

jfXðxmÞ � fXjY¼yðxmÞj
Z
Cm

fXðxÞdxdy: ðA:9Þ

This is a Riemann sum approximating d. We have already shown
that the sequence (dj) converges. h
Proof of Theorem 2. We have to show that all terms in the error
expression are under control. Let us therefore consider the differ-
ence of Eqs. (26) and (13),
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2ðd̂� dÞ ¼
XM

m¼1

nm

n
bSm

 !
�
Z
X

fXðxÞsðxÞdx

¼
XM

m¼1

nm

n
bSm �

Z
Cm

fXðxÞsðxÞdx
� �

¼
XM

m¼1

bSm
nm

n
�
Z
Cm

fXðxÞdx
� �

þ bSm � Sm

� �Z
Cm

fXðxÞdxþ
Z
Cm

ðSm

� sðxÞÞfXðxÞdx: ðA:10Þ

Now, nm
n is the Monte Carlo estimate for PXðCmÞ ¼

R
Cm

fXðxÞdx. The
separation estimate bSm is obtained from numerical integration of
the absolute difference of the kernel density estimators. Its conver-
gence is driven by the quadrature rule, for a trapezoidal rule with
‘ equidistant quadrature points as of Eq. (25) we have

bSm ¼
Z
jf̂ YðyÞ � f̂ YjCm ðyÞjdyþ Oð‘�2Þ: ðA:11Þ

In Devroye and Györfi (1985) it is shown that kernel estimators sat-
isfy a consistency condition: For increasing sample size n there ex-
ists a bandwidth choice h = hn > 0 such that the L1 distance satisfiesR
jf̂ nðyÞ � f ðyÞjdy! 0 for the density f(y) and its kernel density

approximations f̂ nðyÞ ¼ ðnhnÞ�1Pn
i¼1K y�yi

hn

� �
, provided that the stan-

dard deviation is approximated by reasonable data-based estimator
r̂. For instance, this is the case if the following

r̂ ¼min ðn� 1Þ�1Pn
i¼1ðyi � �yÞ2;0:675�1iqrðyÞ

n o
;h ¼ r̂ 3n

4


 ��1
5 are

used with kernels K(�) with
R

KðxÞdx ¼ 1;
R

xKðxÞdx ¼ 0 andR
x2KðxÞdx ¼ 1, including Gaussian, boxed (uniform) and

Epanechnikov kernels. (These alternative shapes are implemented
in a Matlab script available upon request). DenotingeSm ¼

R
jf̂ Y ðyÞ � f̂ YjCm ðyÞjdy we have bSm 
 eSm and the approximation

of the class separation satisfies

jeSm � Smj 6
Z
Y
jjf̂ YðyÞ � f̂ Y jCm ðyÞj � jfY ðyÞ � fYjCm ðyÞjjdy

6

Z
jf̂ YðyÞ � f̂ YjCm ðyÞ � fYðyÞ þ fY jCm ðyÞjdy

¼
Z
Y
jðf̂ YðyÞ � fY ðyÞÞ � ðf̂ Y jCm ðyÞ � fYjCm ðyÞÞjdy

6

Z
Y
jf̂ YðyÞ � fY ðyÞjdyþ

Z
Y
jf̂ Y jCm ðyÞ � fY jCm ðyÞjdy

! 0 as n!1: ðA:12Þ

Hence for n and ‘ approaching infinity, we obtain in the limit

2ðd̂� dÞ !
XM

m¼1

Z
Cm

ðSm � sðxÞÞfXðxÞdx: ðA:13Þ

Theorem 1 shows that for M ?1, this limit vanishes. h
Proof of Proposition 3. From the properties of the expectation
and the variance and by independence we obtain for the product
terms

E½Y � ¼ E
Yk

i¼1

giðXiÞ
" #

¼
Yk

i¼1

E½giðXiÞ�; ðA:14Þ

E½Y jXi� ¼ giðXiÞ
Y
j–i

E½gjðXjÞ�; Var½E½YjXi��

¼ E½giðXiÞ2� � E½giðXiÞ�2
� �Y

j–i

E½gjðXjÞ�2: ðA:15Þ
Hence, if E[gi(Xi)] – 0,

g2
i ¼

Var½E½YjXi��
Var½Y� ¼ Var½giðXiÞ�

Var½Y� �
E½Y �2

E½giðXiÞ�2
: � ðA:16Þ
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