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Abstract

Uncertainty in parameters is present in many risk assessment problems and leads to uncertainty in model predictions. In this work, we

introduce a global sensitivity indicator which looks at the influence of input uncertainty on the entire output distribution without

reference to a specific moment of the output (moment independence) and which can be defined also in the presence of correlations among

the parameters. We discuss its mathematical properties and highlight the differences between the present indicator, variance-based

uncertainty importance measures and a moment independent sensitivity indicator previously introduced in the literature. Numerical

results are discussed with application to the probabilistic risk assessment model on which Iman [A matrix-based approach to uncertainty

and sensitivity analysis for fault trees. Risk Anal 1987;7(1):22–33] first introduced uncertainty importance measures.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Dealing with uncertainty is one of the challenges of
many quantitative risk assessment problems [1]. As
Hammit and Shiyakhter [2] underline, it is often ‘‘the lack

or sparsity of data’’ which prevents the analyst/decision-
maker from assigning a certain value to the parameters.
Uncertainty in the inputs is reflected in uncertainty in
model results and predictions [3].

Saltelli [4] defines sensitivity analysis (SA) as the study of
how ‘‘uncertainty in the output of a model (numerical or

otherwise) can be apportioned to different sources of

uncertainty in the model input.’’ With this respect, Saltelli
[4] remarks that SA techniques to be utilized in the context
of uncertainty analysis should satisfy the following three
requirements: ‘‘global, quantitative and model free.’’ By
global one means that the technique allows to take into
consideration the entire input distribution. By model
independent one means that no assumptions on the model
functional relationship to its inputs is necessary in order for
the SA method to produce accurate results.
atter r 2006 Elsevier Ltd. All rights reserved.
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Saltelli [4] shows that variance-based methods provide a
set of tools that share the three above-mentioned require-
ments. The works of Saltelli et al. [5], Sobol’ [6–8], Rabitz
et al. [9], Rabitz and Alis [10] and Alis and Rabitz [11] have
established the theoretical and numerical background for
the utilization of variance-based techniques. The demon-
strated merits of variance-based global SA methods are the
consideration of the entire range of variation of the inputs
and the ability to identify individual parameter contribu-
tions and parameter interactions in a model independent
fashion. Since Sobol’ decomposition method rests on the
assumption of independent inputs, a limitation of a
technical nature appears when one performs variance
decomposition in the presence of input correlations. More
precisely, Bedford [12] proves that ‘‘the values taken on by

the indices depend on the ordering of the variables.’’ The
problem has been later tackled by Tarantola [13], Ratto
et al. [14] and Saltelli and Tarantola [15], who thoroughly
discuss the use of variance-based uncertainty importance
measures in the presence of correlations among the
parameters.
However, it has been recognized that the interpretation

of global SA based on the sole variance as a way of
indicating how ‘‘the total uncertainty in model prediction is

apportioned to uncertainty in the model input parameters
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[16]’’ or ‘‘the expected percentage reduction in the un-

certainty ythat is attributable to each of the input variables

[17]’’ is not entirely satisfactory. In fact, Saltelli [4]
underlines that variance-based methods ‘‘implicitly assume

that this moment (variance) is sufficient to describe output

variability.’’ Indeed, a decision-maker/analyst state of
knowledge on a parameter or on a model output is
represented by the entire uncertainty distribution [18]. With
this respect, Helton and Davis [19, Section 2, p. 25]
underline that any moment of a random variable ‘‘provides

a summary’’ of its distribution with the inevitable ‘‘loss of

resolution’’ that occurs when the information contained in
the distribution is mapped into a single number. Thus, if an
analyst aims at assessing which parameter influences the
decision-maker state of knowledge the most, a sensitivity
indicator should refer to the entire output distribution and
not to one of its moments. With this respect, inspection of
the whole decision-maker uncertainty requires to add a
fourth feature to Saltelli’s three requirements, namely,
moment independence.

In this work, we analyze how these issues can be
addressed. To do so, we propose a global SA indicator
(called d) that considers the entire distribution both of the
input and of the output (global) in a moment independent
fashion (Fig. 1). We define d so that its computation is well
posed in the presence of correlations among the para-
meters. We derive analytically the main mathematical
properties of d, showing that the importance of a
parameter equals zero when the output is independent of
the parameter and that d equals unity when the set of all
inputs is considered. We propose an algorithm for its
computation and analyze the numerical procedure.

We then compare d to both variance-based indicators
and to the moment independent sensitivity indicator
introduced by Chun et al. [20]. With this respect, we show
that the main difference between d and the Chun–Han–Tak
(CHT) importance measure is that CHT requires to
hypothesize a ‘‘sensitivity case [20, p. 314],’’ while d does
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Fig. 1. d aims at assessing the influence of the entire input distribution on

the entire output distribution without reference to a particular moment of

the output.
not. Thus, CHT is investigating which of the parameters
influence output uncertainty the most given the hypothe-
sized change, while d does not require to pre-suppose a
sensitivity case.
The application to the Ishigami test function [21,16]

details the comparison of the ranking obtained with d to
the ranking obtained with the importance indicators of
Iman–Hora [22], the global sensitivity indices [23] and
CHT [20].
We then discuss the application of d to the uncertainty

and global SA of a probabilistic safety assessment model
first introduced in [24] and next utilized as a test case in
several works [20]. In this analysis, we also focus on the
importance of parameter groups and interactions, which
shall enable us to further highlight the difference between d
and variance-based approaches.
Results of both applications show that variance-based

global SA indicators and d agree in identifying the less
relevant parameters with respect to (w.r.t.) the output
uncertainty. However, differences in the ranking of the
most relevant parameters emerge, due to the different
scope of the indicators.
In Section 2, we present an overview of global SA as

used in risk analysis, starting with variance-based techni-
ques and ending with a moment independent SA indicator
introduced in [20]. Section 3 proposes a new moment
independent importance measure and discusses its mathe-
matical properties. In Section 4, the application to the
Ishigami test function is discussed with the purpose of
illustrating the properties of the new indicator and
comparing results with those of the other uncertainty
importance measures presented in Section 2. In Section 5
the application to the uncertainty analysis of the probabil-
istic risk assessment model on which uncertainty impor-
tance measures were first introduced by Iman [24] is
detailed. Section 6 deals with computational aspects and
presents perspectives of future research. Section 7 offers
conclusions.

2. Global sensitivity analysis

Global SA is the term utilized to denote the set of
techniques aimed at determining which of the input
parameters influence output the most when uncertainty in
the parameters is propagated through the model
[22,24–28,19]. In the family of global SA indicators one
can include non-parametric techniques [29,30,19], variance-
based techniques [31,24,6–11,32,5], and moment indepen-
dent techniques [33,20]. Indicators created for global SA
purposes are called global importance measures [16] or
uncertainty importance measures [34,22,16,20] to differ-
entiate them from local importance indicators [35–37], and
screening methods [38,39].
With reference to Saltelli’s requirements, several authors

have underlined that non-parametric methods often
lack model independence. For example, regression-based
methods are appropriate when a linear input–output



ARTICLE IN PRESS
E. Borgonovo / Reliability Engineering and System Safety 92 (2007) 771–784 773
relationship exists (Frey and Patil [40] discuss limitations).
Saltelli and Marivoet [29] and Hora and Helton [41]
underline the fact that ranking provided for by the
Spearman rank correlation coefficient would be significant
if a monotone input/output relationship were to hold. To
overcome this limitation, a test for non-monotone relation-
ship is introduced in [41].

As an alternative way of measuring uncertainty im-
portance, after the early works of Nakashima and Yamato
[21] and Bier [34], particular attention is deserved by the
Iman and Hora indicator [31,24,22], defined as follows:

IHi ¼ V ½Y � � EfV ½Y jX i�g ¼ VfE½Y jX i�g, (1)

where V ½Y � is the variance of the model output Y, and
EfV ½Y jX i�g is the conditional expected value of V ½Y � given
X i and the expectation is taken over the possible values of
X i, weighted by the appropriate density. It can be proven
that the Iman–Hora uncertainty importance measure (IHi

from now on) is the expected reduction in output variance
that can be achieved if uncertainty in X i is eliminated [4,5].

As Saltelli et al. [5] underline, robustness problems
connected with IHi have been solved through the global
importance measures introduced in the works of Sobol’ [6]
and further developed by Homma and Saltelli [16], Sobol’
[7,8], Rabitz and Alis [10] and Alis and Rabitz [11]. In these
works it is shown that, letting X 2 ½0; 1�n be a set of random
independent variables uniformly distributed in the unitary
hypercube, and

Y ¼ gðX Þ (2)

a square-integrable function, then gðX Þ can be uniquely
decomposed as follows:

gðX Þ � g0 ¼
Xn

i¼1

giðX iÞ þ
X
ioj

gi;jðX i;X jÞ

þ � � � þ g1;2;...;nðX 1;X 2; . . . ;X nÞ ð3Þ

and the variance of Y can be decomposed in the following
sum:

V ½Y � ¼
Xn

i¼1

V i þ
X
ioj

V i;j þ
X

iojom

V i;j;m . . .þ V 1;2;...;n, (4)

where

V i ¼
R
� � �
R
½giðX Þ�

2 dX i;

V i;j ¼
R
� � �
R
½gi;jðX i;X jÞ�

2 dX i dX j ;

. . .

V i;j;...;m ¼
R
� � �
R
½gi;j;...;mðX i;X j ; . . . ;X mÞ�

2Q
k¼i;j;...;m dX k:

8>>>><>>>>:
(5)

Each of the integrands gi;j;...;mðX i;X j ; . . . ;X mÞ in Eq. (5) is
found by iterative expectations on Y [6,12]. Eqs. (3) and (4)
imply that, in the absence of input correlations, variance
decomposition directly mirrors the model structure,
evidencing the presence of interactions and the contribu-
tion to the model output due to individual and parameter
groups.
It turns out that the first order terms, V i, are the ‘‘expected

amount of variance reduction that would be achieved for Y, if

we were able to specify X i exactly [12,5]’’ and, therefore,
coincide with the IHi indicator (Eq. (1)).
Sobol’ [6] introduced the ‘‘sensitivity estimates’’ of order r:

Si1;i2;...;ir �
Vi1;i2;...;ir

V ½Y �
. (6)

Si1;i2;...;ir are the ratios of the interaction terms of order r;
Vi1;i2;...;ir in Eq. (4), and V ½Y �. Homma and Saltelli [23]
introduced the concept of global sensitivity indices.
Particular interest is deserved by the interpretation of the
first order ðS1iÞ and total order sensitivity indices (STi)—or
‘‘total effects’’ in [4]. The first order indices

S1i �
Vi

V ½Y �
(7)

represent the expected percentage reduction in V ½Y � which
is obtained when uncertainty in X i is eliminated [4]. Note
that if one selects S1i as uncertainty importance measure of
X i, one would obtain the same ranking as with IHi.
The total effects

STi �
Xn

r¼1

X
l1;...;lr

Sl1;...;lr ðl1 ¼ iÞ (8)

represent the expected percentage of variance that remains
if all parameters were known but X i [4]. Selecting STi as
uncertainty importance measure one would be measuring
the importance of a parameter as the percentage of the
output variance associated with the parameter [16,23,32,5].
Several studies have been performed on the computation

of the global sensitivity indices: estimation procedures are
the Extended FAST [32], the method of Sobol’ [7], and
others (see [16,23,11]).
We note that Sobol’ theorem holds under the assump-

tion that inputs are independent. Oakley and O’Hagan [42]
evidence that in the case of uncorrelated inputs ‘‘the

representation (i.e. Sobol’ decomposition) reflects the

structure of the model itself ,’’ while it does not reflect the
model structure when correlations emerge. In the case of
dependent inputs, Bedford [12] shows that the function
decomposition is no more unique, and ‘‘the values taken on

by the indices depend on the ordering of the variables.’’ This
problem has then been addressed by Saltelli and Tarantola
[15], which have identified two lottery settings for SA in the
presence and absence of correlations. The first setting
consists in identifying the factor that, if determined, would
lead to the greatest reduction in the variance of Y . The idea
is that, by fixing X i ¼ x�i , one would obtain a new output
distribution, namely f Y jXi

ðyÞ, that would produce a new
output variance (Fig. 2):

V ½Y jX i ¼ x�i �. (9)

However, (see [15]), since X i is a random variable,
V ½Y jX i ¼ x�i � is in its turn a random variable. Then

EXi
fV ½Y jX i�g (10)
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Fig. 2. Unconditional ðV ½Y �Þ and conditional variance ðV ½Y jX i ¼ x�i �Þ of

Y when X i is fixed at x�i .
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is the expected remaining variance if one came to know X i

exactly. Utilizing Eq. (1), one notes that the factor
associated with the lowest EX i

fV ½Y jX i�g are the more
effective in reducing output variance [5].

The second lottery setting of Saltelli and Tarantola [15]
parallels the first, and consists in betting on the sets of
factors that lead to

V ½Y �oV tar, (11)

where V tar is a target variance. In this case, the terms
V ½Y jX i;X j ; . . . ;X m� matter, and by extension of Eq. (1),
the sensitivity measures become

Vi;j;...;m ¼ V ½EðY jX i;X j ; . . . ;X mÞ�. (12)

We note that, based on classical utility theory, variance
is not sufficient to the determination of the decision-maker
state of knowledge in general. According to the theory,
variance is sufficient to describe uncertainty in the
following two cases: (a) the decision-maker possesses a
quadratic utility function; (b) the random variable is
normally distributed [43, Chapter 3, pp. 61–62]. Hence,
identifying which of the parameters reduces variance the
most is not equivalent to identify which parameters
influence the decision-maker state of knowledge of the
output the most, since V ½Y � is just one of the moments of
the output distribution.

Following this line of thought, Chun et al. [20]
introduced a global sensitivity indicator which is moment
independent and looks at the entire distribution of the
model output. The definition of the CHT indicator is as
follows:

CHTi ¼

Z
ðyi

a � y0
aÞ

2 da
� �1=2,

E½Y 0�, (13)

where yi
a is the ath quantile of Y for the sensitivity case, and

y0
a is the ath quantile of Y for the base case. CHTi is

expressed in terms of the cumulative distribution function
of Y (F Y ), and, intuitively speaking, represents the (square
of the) area related to a shift in F Y from the base case to
the sensitivity case. By sensitivity case it is meant a
recomputation of the model when: ‘‘(1) the uncertainty in a

parameter is completely eliminated; (2) the uncertainty range

is changed; and (3) the type of distribution is changed’’ [20].
All three cases reflect a change in the state of knowledge of
the analyst regarding the input parameters.
It is useful to remark two main differences in the

definitions of CHTi on the one side and STi=IHi on the
other side:
�
 CHTi requires the performance of a sensitivity case,
while STi and IHi do not;

�
 STi and IHi refer to a particular moment of the
distribution of Y, namely, V ½Y �, while CHTi does not.

In other words, the question answered by CHTi concerns
the parameter that provokes the greatest change in the
distribution of Y when, for example, the uncertainty in all
the parameters is reduced by, say, a factor of 10 [20]. STi

and IHi measure the relevance of the parameter contribu-
tion to V ½Y � given the current state of knowledge,
i.e. without requiring to specify a sensitivity case that
reflects an hypothetical decision-maker state of knowledge
change.
In the next section, we introduce a global sensitivity

indicator, which is independent of the moments of the
model output and independent of the sensitivity case.

3. A moment independent importance measure

In this section, we present an uncertainty importance
measure with the following characteristics: it does not refer
to a particular moment of Y—and with this respect is
similar to CHTi but different from STi—and does not
require a ‘‘sensitivity case’’—with this respect it is similar to
STi but different from CHTi. We also try and define the
new indicator in such a way that its definition is properly
posed in the presence of correlations among the para-
meters.
We start with the relevant notation. Let
1.
X ¼ ðX 1;X 2; . . . ;X nÞ 2 Rn (14)

be the set of uncertain input parameters;

2.
Y ¼ gðX Þ; gðX Þ : E � Rn�!R (15)

be the functional relationship between output Y and
input X ;
3.
 x ¼ ðx1;x2; . . . ; xnÞ a realization of X ;

4.
 F X ðxÞ the (subjective) cumulative distribution of X , i.e.

the joint cumulative distribution of the X i. FX ðxÞ

expresses the analyst state of knowledge on X ;

5.
 f X ðxÞ the corresponding joint density of X ;
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6.
 f Xi
ðxiÞ the marginal density of xi. As it is well known it

is related to the joint density by

f Xi
ðxiÞ ¼

Z
. . .

Z
f X ðxÞ

Y
sai

dxs; (16)
7.
 FY ðyÞ the cumulative distribution function of the model
output Y;
8.
 f Y ðyÞ the corresponding density;

9.
1A more technical definition of di is as follows:

di ¼
1

2
EX i

Z
jdmY � dmY jX i

j

� �
, (20)

where mY and mY jX i
are, respectively, the unconditional and conditional

measures of Y.
f Y Xij ðyÞ the conditional density of Y given that one of
the parameters, X i, assumes a fixed value.

The rationale behind the definition of the following
moment independent importance indicator is as follows.
The unconditional density/cumulative distribution of Y

obtained with all parameters free to vary in their
uncertainty range are f Y ðyÞ=FY ðyÞ (the continuous line in
Fig. 3 shows an example of density f Y ðyÞ). Suppose now
that we are able to fix one of the inputs at, say, x�i . We
would obtain the conditional density/distribution of Y

given that X i is fixed at x�i , namely f Y jX i
ðyÞ=F Y jXi

ðyÞ

(dashed line in Fig. 3).
The shift between f Y ðyÞ and f Y jX i

ðyÞ can be measured by
the total area evidenced in Fig. 3. Such an area is given by

sðX iÞ ¼

Z
jf Y ðyÞ � f Y jX i

ðyÞjdy. (17)

Eq. (17) shows that sðX iÞ is dependent on X i, and as such,
it is a function of random variable. The expected shift is
given by

EX i
½sðX iÞ� ¼

Z
f Xi
ðxiÞ

Z
jf Y ðyÞ � f Y jXi

ðyÞjdy

� �
dxi. (18)

We then propose the following definition.

Definition 1. We name the quantity

di ¼
1

2
EX i
½sðX iÞ� (19)
moment independent sensitivity indicator of parameter X i

w.r.t. output Y.1di represents the normalized expected shift
in the distribution of Y provoked by X i.

We now discuss some of the properties of di (Table 1).
Property no. 1 in Table 1 bounds the possible values that
the di of an individual parameter can assume: it can be
proven that di lies between 0 and 1 (the proof is in Section
A.1 in the Appendix). In particular, one finds that di is zero
when Y is independent of X i (Property 2 in Table 1). In
fact, if Y is independent of X i, one would not get any
change in f Y ðyÞ for any value xi assumed by X i. Thus,
f Y jXi
ðyÞ ¼ f Y ðyÞ and the integrand in Eq. (18) is null for

all xi.
Property no. 3 suggests that d of all parameters equals

unity. To prove the property, however, we need to extend
the definition of d from an individual parameter to a group
of parameters. This is done as follows.

Definition 2. Let R ¼ ðX i1 ;X i2 ; . . . ;X ir Þ be any group of
parameters. Then

di1;i2;...;ir ¼
1
2
ER½sðRÞ� ¼

Z
f Xi1

;Xi2
;...;X ir
ðxi1 ; xi2 ; . . . ;xirÞ

	

Z
jf Y ðyÞ � f Y jX i1

;Xi2
;...;Xir
ðyÞjdy

� �
dxi1 dxi2 . . . dxir ,

ð21Þ

where

f X i1
;X i2

;...;Xir
ðxi1 ;xi2 ; . . . ;xir Þ ¼

Z
. . .

Z
f X ðxÞ

Y
kai1;i2;...;ir

dxk.

(22)

The above definition then enables to prove Property 3 in
Table 1 which states that

d1;2;...;n ¼ 1, (23)

i.e. the joint importance of all parameters equals unity (for
the proof, see Section A.2 in the Appendix).

One can summarize these three properties as follows.
The d of an individual parameter or of a group can assume
values between 0 and 1. It will equal 0 when Y is
independent of the parameter or group of parameters at
hand. It will equal 1 when the group including all inputs is
considered.
A couple of remarks. As far as correlations are

concerned, we observe that Definitions 1 and 2 hold inde-
pendently of whether the parameters are correlated. In fact,
Eqs. (19) and (21) require the specification of the joint
density, f X ðxÞ, without reference to the eventual indepen-
dence of the parameters.
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Table 1

Properties of the uncertainty importance measure introduced in this work

No. Property Meaning Proof

1 0pdip1 Bounds the possible values di can assume Section A.1

2 di ¼ 0 If Y is independent of X i then d ¼ 0 Main body

3 d1;2;...;n ¼ 1 The importance of all parameters equals unity Section A.2

4 dij ¼ di If Y is dependent on X i but independent of X j then dij ¼ di Footnote

5 dipdijpdi þ djji Bounds the possible values dij can assume Section A.3

2In fact, if Y is independent of X j , then jf Y ðyÞ � f Y jX iX j
ðyÞj ¼ jf Y ðyÞ �

f Y jX i
ðyÞj that leads to Eq. (30) by definition of d.
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Let us now study the interpretation of Definitions 1 and
2 in terms of SA settings. One can see that Definition 1
resembles Setting 1 of [15] with a main similarity and a
main difference. The similarity is that both settings involve
conditioning w.r.t. X i ¼ x�i . The difference lies in the fact
that Setting 1 of [15] looks for the parameters that achieve
the greatest reduction in the variance of Y, while the setting
implied by Definition 1 is the identification of the
parameters that influence the entire distribution the most.
Similarly, Definition 2 parallels Setting 2 of [15] in so far
groups are concerned. However, we note that Setting 2 of
[15] again refers to variance reduction, while Definition 2
concerns influence w.r.t. the entire distribution.

We now discuss the computation of d for a simple
example, with the purpose of illustrating its definition.

Example 1. Suppose that the unconditional density of Y ¼

gðX Þ is

f Y ðyÞ ¼ Betaðy; 1; 3Þ. (24)

Suppose further that one of the parameters, X i is a discrete
random variable than can assume four values, namely, x1

i ,
x2

i , x3
i , x4

i with PðX i ¼ xm
i Þ ¼

1
4
ðm ¼ 1; . . . ; 4Þ. Suppose that

either analytically or numerically, you are able to obtain
the four conditional distributions of Y given that X i ¼ xm

and that they are as follows:

f Y jXi¼xm
i
ðyÞ ¼

f Y jXi¼x1
i
ðyÞ ¼ Betaðy; 2; 3Þ;

f Y jXi¼x2
i
ðyÞ ¼ Betaðy; 5; 3Þ;

f Y jXi¼x3
i
ðyÞ ¼ Betaðy; 7; 3Þ;

f Y jXi¼x4
i
ðyÞ ¼ Betaðy; 9; 3Þ:

8>>>>><>>>>>:
(25)

Fig. 4 shows the unconditional and conditional distribu-
tions named above.

Let us compute di. For each of the conditional distri-
butions we have (Eq. (17))

sðxm
i Þ ¼

Z
jf Y ðyÞ � f Y jX i¼xm

i
ðyÞjdy; m ¼ 1; . . . ; 4. (26)

For X i ¼ x1
i , we have

sðx1
i Þ ¼

Z 1

0

jbðy; 1; 3Þ � bðy; 2; 3Þjdy ¼ 0:6. (27)

sðx2
i Þ, sðx3

i Þ, sðx4
i Þ are computed in a similar fashion (Fig. 4).

The resulting value of di is found as di ¼
1
2

1
4

sðx1
i Þþ

�
1
4

sðx2
i Þ þ

1
4

sðx3
i Þ þ

1
4

sðx4
i Þ� ¼ 0:75.
Definitions 1, 2 and the example can be utilized to
indicate a possible algorithm for the numerical computa-
tion of di. Preliminary step is an uncertainty propagation
leading to the determination of the unconditional density
of Y; second step is the sampling of a value of xi from
f X i
ðxiÞ; third step is the sampling of the conditional

distribution of Y given X i, i.e. f Y jX i
ðyÞ; fourth step is the

computation of sðX iÞ; fifth step the estimation of di from
the computed sðxiÞ’s.
In the remainder of this section, we detail some

observation on properties of the importance of parameter
groups (dR, Definition 2). To do so, we begin with groups
of two parameters, R ¼ ðX i;X jÞ.
According to Definition 2, the delta of X i and X j is given

by

dij ¼
1

2
EXiX j

½sðX i;X jÞ�, (28)

where

sðX i;X jÞ ¼

Z
jf Y ðyÞ � f Y jXiX j

ðyÞjdy (29)

is the shift obtained fixing X i at xi and X j at xj. Based on
the above discussion, it is immediate to observe that, if Y is
independent of X j, then (Property 4, Table 1)

dij ¼ di. (30)

Eq. (30) simply re-states the fact that no contribution to
model uncertainty comes from X j if Y does not depend
upon it.2

However, if there is a contribution to uncertainty coming
from X j, one would expect dij to increase. Indeed, let us
think of sðX i;X jÞ as obtained in two steps. The first step is
given by fixing X i at xi and the second step is obtained by
then fixing of X j at xj (Fig. 5). We limit ourselves to an
intuitive explanation; a formal treatment is offered in
Section A.3. Note that from a mathematical viewpoint d
shares the properties of a distance (see [44] for definition of
distance). Hence, di represents the expected distance
between the density of Y and the conditional density of
Y given X i. Similarly, dij is the distance between the density
of Y and the conditional density of Y given X i and X j.
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Now, geometrically, going from f Y ðyÞ to f Y jXiX j
ðyÞ

through f Y jX i
ðyÞ is the same as moving from point A to

point C but first going through point B. The length of path
AB–BC is greater then the length of AC, unless the three
points lie on the same line.

With this in mind, one can write

f Y ðyÞ � f Y jXiX j
ðyÞ ¼ ½f Y ðyÞ � f Y jXi

ðyÞ�

þ ½f Y jX i
ðyÞ � f Y jXiX j

ðyÞ� ð31Þ

and interpret ½f Y ðyÞ � f Y jX i
ðyÞ� (first difference in the right-

hand side of Eq. (31)) as the difference between the
unconditional density of Y and the conditional density
found fixing X i and f Y jXi

ðyÞ � f Y jXiX j
ðyÞ as the residual

difference between f Y jXi
ðyÞ and f Y jX iXj

ðyÞ obtained fixing
X j after X i has been fixed. Now, defining the conditional d
for the second step as

djji ¼
1

2
EXiX j

Z
jf Y jXi

ðyÞ � f Y jX iXj
ðyÞjdy

� �
. (32)
Noting djjiX0 and that djji ¼ 0, if Y is independent of X j, it
is possible to see that (Appendix, Section A.3):

dipdijpdi þ djji, (33)

which states that the joint importance of X i and X j is
greater than the individual importance of X i, but limited
by the importance of the residual term djji.
Suppose now that the observed shift in uncertainty due

to X j is always independent of the value assumed by X i. In
that case, one would expect djji ¼ dj. If it happens that

dij ¼ dj þ di, (34)

i.e. the three points lie on the same line, we say that the
effects of the uncertainty in X i and X j on f Y ðyÞ are
separable.
The next section describes the application of d to the

global SA of the Ishigami test function, highlights the
computational aspects in greater detail and illustrates a
first comparison of d with the previously introduced
importance measures listed in Section 2.

4. A test function analysis

This section describes the numerical computation of d
and the comparison with variance-based techniques and
the CHT indicator by studying the application of d to the
Ishigami test function [20]. The mathematical expression of
the function is

Y ¼ gðX Þ ¼ sinX 1 þ a sin2X 2 þ bX 4
3 sinX 1 (35)

and the X i are assumed independent and uniformly
distributed between �p and p. The input distributions,
the sample size ðN ¼ 1000Þ and the values of the constants
a and b (5 and 0.1, respectively) are the same as in [20] to
allow for a direct comparison.
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Table 2

Parameter global importance measured with delta

Parameter di S1i STi CHTi

X 1 0.33 0.39 0.62 0.66

X 2 0.39 0.29 0.34 0.98

X 3 0.28 0.02 0.28 0.67

3Note that IHi ¼ S1i � V ½Y �; hence the ranking obtained with S1i is the

same as the ranking obtained with IHi . Such ranking is reported in [20].
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Let us first discuss the uncertainty analysis of Y.
Uncertainty propagation (Fig. 6) produces f Y ðyÞ best fitted
by a logistic density, with a Kolmogorov–Smirnov
statistics equal to 0.02.

We now describe the computation of dðX 1Þ. One first
generates a value for X 1, namely x1

1 sampling from f X1
ðx1Þ.

In our first generation, we get x1
1 ¼ 1:029. Given this value,

the conditional density of Y is obtained by propagating
uncertainty in the model keeping X 1 ¼ x1

1. The resulting
density, f Y jX1¼x1

1
ðyÞ, is shown in Fig. 7.

f Y jX1¼1:029
ðyÞ is now fitted by a beta distribution (the

parameters are illustrated in Fig. 7) with a Kolmogor-
ov–Smirnov statistics of 0.07. sðx1

1Þ is, then, computed from
a simple numerical integration of the absolute value of the
difference between the unconditional (Fig. 6) and the
conditional density (Fig. 7). In this case, it turns out that
sðx1

1Þ ¼ 0:638. The next step is to repeat the procedure to
produce x2

1 (equal to 2.84 in our second run), determine the
new conditional density of Y and compute sðx2

1Þ, which, in
this case, turns out to be equal to 0.58. Repeating this steps
for a 1000 times, di is then estimated to be di ¼ 0:33.

Proceeding in a similar fashion for X 2 and X 3, the
moment independent indicators for X 2 and X 3 are
computed. The results are reported in Table 2.

Table 2 shows that X 2 is the most influential parameter,
followed by X 1 and X 3. As far as interactions are
concerned, one can observe also that d1 þ d2 þ d3 ffi 1, in
this case. Recalling Property 3 in Table 1, then it holds that
d123 ¼ d1 þ d2 þ d3, i.e., using the terminology introduced
in Section 3, Eq. (34), the effects of uncertainty in the
parameters on the uncertainty in Y are separable—for this
model and for the given input distributions.
We now discuss the comparison of the above results to
the ones obtained for the CHTi indicator and for variance-
based techniques, S1i and STi (Table 2).
The fourth column of Table 2 shows the total sensitivity

indices of the three parameters estimated with the Sobol’
method, utilizing the software SIMLAB [45]. The third
column shows the result for the S1i indicator (Eq. (1)) and
the fifth column for the CHT indicator (Eq. (13)), as
reported in [20].3 We note that STi and S1i produce the
same ranking, while di and CHTi produce different ranking
w.r.t. the other indicators (see also Fig. 8).
The different ranking between STi=S1i and di=CHTi is

explained by the fact that STi and S1i are variance-based,
while di and CHTi are moment independent. This result
confirms that a parameter which influences variance the
most is not necessarily the parameter that influences the
output distribution the most. The difference between
the ranking produced by di and CHTi can be explained
as follows. CHTi results in Table 2 are the importance of
the parameters when uncertainty in each of them, one at a
time, is completely eliminated (Table 3). Hence, CHTi

ranks inputs given that an hypothesized change in the state
of knowledge of the decision-maker happens. On the other
hand, di represents the importance of the entire distribution
of X i w.r.t. the entire distributionof Y, given the current
state of knowledge and without considering an artificially
hypothesized change.
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Table 3

Distributions for the parameters of the PRA model of Iman [24]

Parameter Distribution Mean Error factor

X 1 Lognormal 2 2

X 2 Lognormal 3 2

X 3 Lognormal 1	 10�3 2

X 4 Lognormal 2	 10�3 2

X 5 Lognormal 4	 10�3 2

X 6 Lognormal 5	 10�3 2

X 7 Lognormal 3	 10�3 2
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Finally, given the above discussion, comparing the ranks
obtained with the four indicators in Table 2 enables one to
conclude that X 2 is the most important parameter when the
entire output distribution is considered (it ranks first with
both d and CHT), while X 1 is the most important
parameter in explaining the variance of the model output.
0.0
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1.5

2.0

-2 0 2 4 6 8 10 12 14 16

>5.0% 90.0%

V
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Values in Millionths
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Fig. 9. f YTop
ðyÞ as a result of uncertainty analysis.

Table 4

Delta for the parameters of the PRA model of Iman [24]

Parameter X 1 X 2 X 3 X 4 X 5 X 6 X 7

di 0.11 0.17 0.09 0.13 0.18 0.20 0.11
5. Application to a probabilistic risk assessment model

The purpose of this section is to illustrate the application
of d to the probabilistic risk assessment (PRA) model
utilized in [24] where uncertainty importance measures
were first introduced. The model has also been utilized in
[20] (see for a comparison of the CHT indicator with the
Iman–Hora importance measure). Besides computing the d
for the model parameters, we also estimate the first and
total order global sensitivity indices, to highlight the
differences between Sobol’ interactions and d-interactions
(djji).

The probability of the top event is written as [24]

YTop ¼ X 1X 3X 5 þ X 1X 3X 6 þ X 1X 4X 5 þ X 1X 4X 6

þ X 2X 3X 4 þ X 2X 3X 5 þ X 2X 4X 5

þ X 2X 5X 6 þ X 2X 4X 7 þ X 2X 6X 7. ð36Þ
The numerical values of the input distributions utilized in
this analysis are the same as the ones used in [20] and are
presented in Table 3.
The result of uncertainty propagation with a sample of

size N ¼ 1000 are displayed in Fig. 9. Fig. 9 shows that
f YTop

ðyÞ is lognormal, with mean equal to 2E � 6 and error
factor equal to 2.4.
The calculation of the d importance measure for the

parameters has been performed in accordance with the
computation algorithm proposed in Section 3. We have
found the results of Table 4.
Table 4 shows that X 6 is the most relevant parameter,

followed by X 5, X 2, X 4, X 7, X 1 and X 3. Thus, we can say
that X 6 is the most influential parameter on the top event
while X 3 is the least influential.
We then compare the above results to the ones obtained

by making use of the Sobol’ total effects, the CHTi and S1i

indicators. Table 5 shows the results. The rankings
obtained with CHTi have been computed in [20] and are
as such reported in Table 5, while S1i and STi have been
computed with the Software SIMLAB [45].
To analyze the agreement among the ranking obtained

with the four importance measures, we computed the
Savage Score Correlation Coefficients (SSCC) (first intro-
duced in [25]; for an illustration see also [46]) on the
ranking in Table 5. The result is reported in Table 6.
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Table 5

Parameter ranking with the four uncertainty importance measures

Parameter di S1i STi CHTi

X 1 6 6 5 6

X 2 3 1 1 1

X 3 7 7 7 7

X 4 4 4 4 4

X 5 2 2 3 2

X 6 1 3 2 3

X 7 5 5 6 5

Table 6

SSCC matrix for the four importance measures used in Section 5

di S1i STi CHTi

di 1 0.49 0.59 0.49

STi 0.59 0.93 1 0.93

CHTi 0.49 1 0.93 1

S1i 0.49 1 0.93 1

0
X1 X2 X3 X4 X5 X6 X7
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ST

0.4
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0.2

0.15

0.1

0.05

Fig. 10. The comparison of first order (S1) and total order (ST) sensitivity

indices shows the low relevance of interactions for the model at hand when

the error factor equals 2.

4This sample size is also used in [10] as a threshold for numerical

complexity.
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One notes that the ranking of CHTi coincides with that
of S1i, while it differs from both the di and the STi ranking.
Table 6 also shows that di results are in a higher agreement
with STi results then with CHTi and S1i.

We now turn our attention to a more detailed
comparison of the global sensitivity indices and d. We
start with the ranking obtained with STi and di. One notes
that both indicators agree in the identification of the least
relevant parameters: X 3 ranks 7th according to both
indicators, X 1 6th, X 7 5th and X 4 4th. Some difference
in the agreement is found on the ranking of the most
relevant parameters: X 6 ranks first according to di, while it
ranks second according to STi;X 5 ranks 2nd according to
di, while it ranks 3rd according to STi;X 2 ranks 3rd
according to di, while it ranks 1st according to STi. Since
the ranking difference ought to be attributed to the
different meaning of the importance indicators, the
following summary of the result becomes natural:
(i)X 3;X 1;X 7 and X 4 are non-relevant on the model
uncertainty, both when the entire distribution ðdiÞ or its
variance ðSTiÞ are considered; (ii) the most relevant
parameter w.r.t. the entire output distribution is X 6, while
the most relevant w.r.t. the output variance is X 2.

We then discuss how d and global sensitivity indices
interpret interactions. From Table 4 one notes thatP7

i¼1di ¼ 0:99. Recalling that d1;2;...;7 ¼ 1, we have that
d1;2;...;7 ’

P7
i¼1di, i.e. interactions play a minor role

according to d. Using the terminology introduced in
Section 3, we could say that the effect of uncertainty in
the X i on uncertainty in the top event are separable. Let us
now examine the relevance of interactions that is revealed
by Sobol’ variance decomposition. Fig. 10 shows the
comparison between the total effects of each of the
parameters and the first order indices.
From Fig. 10 one notes that the percentage of
interaction terms in each of the parameter importance is
not as relevant. In fact,

P7
i¼1S1i ¼ 94%, indicating that

almost all of the model variance is explained by individual
effects. Hence, results of Sobol’ indices show that the
model responds additively to the input uncertainty. Thus,
in this case both separability and additivity play a role. We
then performed additional calculations to verify whether
the above conclusion on interactions was robust w.r.t. the
choice of the input distributions. We increased all error
factors in Table 3 from 2 to 6. Results now show that given
the new distributions

P7
i¼1S1i ¼ 57%, signaling that a

significant portion of the model variance is now explained
by interaction terms. On the other hand,

P7
i¼1di ¼ 86%,

implying that the output uncertainty is mainly attributable
to individual parameter contributions, although it is not
completely separable, as in the previous case.

6. Computational aspects: an overview of current methods

and opportunity for future research

Although the primary purpose of this work is to
introduce the definition, properties and meaning of d, let
us touch upon computational aspects of d. The computa-
tional cost of a technique is defined in terms of number of
model runs necessary to estimate the sensitivity measure.
The estimation of d for the above-mentioned models did

not pose any particular numerical issues. However, the cost
for estimating di using the algorithm proposed in Section 3
is equal to nNoN iwhere n is the number of parameters, No

is the number of runs necessary for the outer integration
and N i the number of integrals necessary for the internal
integration. Thus for computationally intensive models or
models requiring sample sizes of N41000,4 the estimation
of di can raise the ‘‘curse of dimensionality [10]’’ problem
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which affects most of global SA techniques (as an example,
see the investigations of Frey and Patil [40] and Patil and
Frey [47]). The trade-off between computational complex-
ity and amount of uncertainty information delivered by an
SA technique is being and has been extensively dealt with
in the literature. For example Rabitz and Alis [10] report
that the cost of computing all the sensitivity indices in
Sobol’ decomposition is equal to N 	

Pn
i¼0 n!=ðn� iÞ!i!,

which grows exponentially with the number of parameters.
After the works of Homma and Saltelli [23], at least three
approaches have been envisioned to ease the estimation of
the global sensitivity indices: (i) Saltelli et al. [32] proposed
the Extended FAST, which enables one to compute the first
order and the total order indices at a cost equal to N, with
a gain of

Pn
i¼0 n!=ðn� iÞ!i! model runs; (ii) Rabitz and Alis

[10] and Alis and Rabitz [11] propose a two step approach
based on finite difference decomposition; (iii) Oakley and
O’Hagan [42] demonstrate that further savings can be
obtained if one adopts a Bayesian approach.

Besides the estimation of variance-based indicators,
several authors have dealt with the problem of increasing
the efficacy of sampling methods in uncertainty propaga-
tion for computationally intensive models. Some examples
are: (i) Sobol’ quasi-random sequence generator [48]
applied by Homma and Saltelli [16] in the computation
of the Iman–Hora importance measure of Eq. (1); (ii) Latin
Hypercube sampling, first introduced in McKay et al. [49],
and thoroughly discussed in [30,19].

Another way of circumventing the curse of dimension-
ality is to make use of screening methods. Screening
methods are SA tools that enable to identify non-relevant
parameters and therefore to eliminate from the analysis
variables that do not deserve further attention. We refer the
reader to the methods of Morris [38] and the ones described
in [39].

As far as the estimation of d is concerned, one can think
of utilizing combinations of techniques to reduce either n

or N i=No or both. A first way is utilizing the algorithm
used in this work together with a sampling method (Latin
Hypercube Sampling or Sobol’ quasi-random lpt); this
should allow to maintain N i and No at their lowest size. A
second way is applying a two-step method a la Alis and
Rabitz [11]; this would reduce n. A third way is adopting a
Bayesian approach a la Oakley and O’Hagan [42]; this
would be effective in reducing N iNo. A fourth way is
utilizing screening methods first to screen out non-relevant
inputs and then applying a full-fledged estimation of delta,
eventually with an appropriate sampling method: in this
case both n and N i and No would be reduced. The
refinement of computational strategies for d shall be the
subject of future research by the author.

7. Conclusions

When uncertainty in model parameters is present, the
problem of assessing which of the inputs influences output
uncertainty the most is properly addressed by global SA.
The most recent literature development has assisted to
the refinement and establishment of the theoretical and
computational framework of variance-based techniques.
We have seen that variance decomposition reflects model
structure when the inputs are uncorrelated and provides
guidance in data collection when an analyst wants to
achieve a pre-determined variance reduction (even when
parameters are correlated). However, in terms of uncer-
tainty analysis, a limitation of a variance-based global SA
is the fact that variance is just one of the moments of the
output distribution and, as such, cannot be elected as
representative of the whole decision-maker state of knowl-
edge. In addition, when parameters are correlated, the
direct relationship between variance and model structure
does not hold.
In this work, we have addressed these issues by

introducing a moment independent uncertainty indicator
ðdÞ that looks at the entire input/output distribution and
whose definition is well posed also in the presence of
correlations among the parameters. We have discussed the
mathematical properties of d. We have seen that it is always
between 0 and 1, it equals 0 if the output is not dependent
upon an input, it is readily defined for parameter groups
and it equals unity if the group of all inputs is considered.
We have seen that its definition is well posed in the
presence of correlations among the parameters, since one
needs to specify a joint distribution of the inputs without
requiring independence. We have also shown that the
indicator does not pre-suppose a sensitivity case, i.e. a
change in the decision-maker uncertainty, but reflects the
current analyst/decision-maker state of knowledge.
We have illustrated the numerical aspects of the

computation of d. We have compared its results to those
of first and total order sensitivity indices, the Chun–Han–
Tak and the Iman–Hora indicators by studying the
application of these techniques to the Ishigami test
function.
We have then discussed the application of the above

techniques to the PRA model analyzed in [20] and
introduced in [24].
Results of both applications show that variance-based

indicators and d agree in identifying the less relevant
parameters w.r.t. the output uncertainty. Discrepancies in
ranking between the relevant parameters reveal that factors
influencing variance the most are not necessarily the ones
that influence the entire output distribution the most.
In summary, the analysis has shown that if one utilizes

the moment independent importance measure introduced
in this work one gains insights on which of the parameters
influence uncertainty the most. Utilizing the new measure
jointly with variance-based indicators would also enable
the analyst to obtain insights on the parameters that
achieve the greatest variance reduction and, when para-
meters are independent, on the model structure and
interactions.
The work also paves the way to further research. The

first line of research concerns the selection of the
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appropriate computational algorithm in the estimation of d
for numerically intensive models (see the discussion on
alternative approaches illustrated in Section 6). A second
line of research is represented by exploring the conditions
on model structure and input distributions under which
separability holds (i.e. d1;2;...;n ¼ d1 þ d2 þ � � � þ dn) and
whether, under the same conditions, additivity holds (i.e.
ðV ¼

Pn
i¼1ViÞ).
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Appendix A

A.1. Proof of Property 1
Proof. We prove first that dip1. By the triangle inequality,

jf Y ðyÞ � f Y jX i
ðyÞjpjf Y ðyÞj þ jf Y jX i

ðyÞj. (37)

Hence,Z
jf Y ðyÞ � f Y jXi

ðyÞjdyp
Z
jf Y ðyÞjdyþ

Z
jf Y jXi

ðyÞjdy.

(38)

Since,
R
jf Y ðyÞjdy ¼ 1 and

R
jf Y jXi

ðyÞjdy ¼ 1, we haveZ
jf Y ðyÞ � f Y jXi

ðyÞjdyp2. (39)

Hence,

EX i
½sðX iÞ� ¼ EXi

Z
jf Y ðyÞ � f Y jX i

ðyÞjdy

� �
pEX i

½2� ¼ 2.

(40)

Applying Definition 2 (Eq. (19)) there follows that dip1.
The fact that diX0 follows from the monotonicity

property of integrals, since jf Y ðyÞ � f Y jX i
ðyÞjX0. &

A.2. Proof of Property 3
Proof. We prove that d1;2;...;n ¼ 1. By definition, when X is
fixed at X �, y� ¼ gðX �Þ and PðY ¼ y�Þ ¼ 1. That is
f Y jX¼X� ðyÞ is a delta-Dirac measure on y�. Consider then
a finite but small interval around y� and write (Fig. 11):

ef Y jX¼X� ðy; y1; y2Þ ¼

1

y2 � y1

if y1oyoy2;

0 otherwise:

8<: (41)

Note that f Y jX¼X� ðyÞ ¼ limy1!y2
ef Y jX¼X� ðy; y1; y2Þ.

Now, consider still a small interval around y� and
compute the total shift when y belongs to such small
interval around y�:

sðX Þ ¼ lim
y1!y2

Z
jf Y ðyÞ �

ef Y jX ðy; y1; y2Þjdy. (42)

Applying Eq. (41) one gets

sðX Þ ¼ lim
y1!y2

Z y1

�1

f Y ðyÞ
�� ��dyþ

Z y2

y1

f Y ðyÞ �
1

y1 � y2

���� ����dy

þ

Z 1
y2

jf Y ðyÞjdy, ð43Þ

which is equivalent to

sðX Þ ¼ lim
y1!y2

Z y1

�1

jf Y ðyÞjdyþ

Z 1
y2

jf Y ðyÞjdy

þ

Z y2

y1

f Y ðyÞ �
1

y1 � y2

���� ����dy. ð44Þ

Noting that

lim
y1!y2

Z y1

�1

jf Y ðyÞjdyþ

Z 1
y2

jf Y ðyÞjdy

¼

Z 1
�1

f Y ðyÞdy ¼ 1 ð45Þ

and that f Y ðyÞdy! 0 as y1! y2, we have

lim
y1!y2

Z y2

y1

f Y ðyÞ �
1

y1 � y2

���� ����dy

¼ lim
y1!y2

Z y2

y1

1

y2 � y1

���� ����dy ¼ 1. ð46Þ

Substituting back into Eq. (44) one finds

sðX Þ ¼ 1þ 1 ¼ 2. (47)
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There follows that

d1;2;...;n ¼
1

2
EX ½sðX Þ� ¼

1

2
EX ½2� ¼ 1: & (48)

A.3. Proof of Property 5
Proof. Note that

jf Y ðyÞ � f Y jX iXj
ðyÞjpjf Y ðyÞ � f Y jXi

ðyÞj

þ jf Y jXi
ðyÞ � f Y jXiX j

ðyÞj. ð49Þ

Taking the integral of both sidesZ
jf Y ðyÞ � f Y jX iXj

ðyÞjdy

p
Z
jf Y ðyÞ � f Y jX i

ðyÞjdy

þ

Z
jf Y jXi

ðyÞ � f Y jX iXj
ðyÞjdy. ð50Þ

Now, one can take the expectation, to get

EX iXj

Z
jf Y ðyÞ � f Y jXiX j

ðyÞjdy

� �
pEX iXj

Z
jf Y ðyÞ � f Y jXi

ðyÞjdy

� �
þ EX iXj

Z
jf Y jXi

ðyÞ � f Y jXiX j
ðyÞjdy

� �
. ð51Þ

Since f Y jXi
ðyÞ depends on X i and not on X j, it is true that

EX iXj

Z
jf Y ðyÞ � f Y jXi

ðyÞjdy

� �
¼ EX i

Z
jf Y ðyÞ � f Y jXi

ðyÞjdy

� �
¼ 2dðX iÞ. ð52Þ

On the other side,

EX iXj

Z
jf Y jXi

ðyÞ � f Y jXjX i
ðyÞjdy

� �
(53)

is a positive term, representing the expected shift between
the distribution of Y given X i and the distribution of Y

conditional on X i. We denote this term as

EX iXj

Z
jf Y jXi

ðyÞ � f Y jXjX j
ðyÞjdy

� �
¼ 2djji. (54)

Again note that EXiX j
½
R
jf Y jXi

ðyÞ � f Y jXiX j
ðyÞjdy�X0 and

that EXiX j
½
R
jf Y jX i

ðyÞ � f Y jX iXj
ðyÞjdy� ¼ 0 if Y is indepen-

dent of X j. Combining this facts gives

dijpdi þ djji. (55)

Note that combining Eqs. (55) and (30) one can rewrite Eq.
(55) equivalently as

dipdijpdi þ djji (56)

since djjiX0, which is the thesis. &
References

[1] Apostolakis GE. How useful is quantitative risk assessment. Risk

Anal 2005;24(3):515–20.

[2] Hammit JK, Shiyakhter I. The expected value of information and the

probability of surprise. Risk Anal 1999;19(1):135–52.

[3] Apostolakis GE. A commentary on model uncertainty. In: Proceed-

ings of the workshop on model uncertainty: its characterizaton and

quantification. University of Maryland, College Park, Maryland,

USA: Center for Reliability Engineering; 1995.

[4] Saltelli A. Sensitivity analysis for importance assessment. Risk Anal

2002;22(3):579.

[5] Saltelli A, Tarantola S, Campolongo F. Sensitivity analysis as an

ingredient of modelling. Stat Sci 2000;19(4):377–95.

[6] Sobol IM. Sensitivity estimates for nonlinear mathematical models.

Mat Model 1990;2(1):112–8 [in Russian];

Sobol IM. Sensitivity estimates for nonlinear mathematical models.

MMCE 1993;1(4):407–14 [English translation].

[7] Sobol’ IM. Global sensitivity indices for nonlinear mathematical

models and their Monte Carlo estimates. Math Comput Simulation

2001;55(1):271–80.

[8] Sobol’ IM. Theorem and examples on high-dimensional model

representation. Reliab Eng Syst Saf 2003;79:187–93.

[9] Rabitz H, Alis OF, Shorter J, Shim K. Efficient input output model

representation. Comput Phys Commun 1998;117:11–20.
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