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Variance based methods have assessed themselves as versatile and effective among the various available
techniques for sensitivity analysis of model output. Practitioners can in principle describe the sensitivity
pattern of a model Y = f (X1, X2, . . . , Xk) with k uncertain input factors via a full decomposition of the
variance V of Y into terms depending on the factors and their interactions. More often practitioners are
satisfied with computing just k first order effects and k total effects, the latter describing synthetically
interactions among input factors. In sensitivity analysis a key concern is the computational cost of the
analysis, defined in terms of number of evaluations of f (X1, X2, . . . , Xk) needed to complete the analysis,
as f (X1, X2, . . . , Xk) is often in the form of a numerical model which may take long processing time.
While the computational cost is relatively cheap and weakly dependent on k for estimating first order
effects, it remains expensive and strictly k-dependent for total effect indices. In the present note we
compare existing and new practices for this index and offer recommendations on which to use.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction to variance based measures

Sensitivity analysis is the study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input factors, factors
from now on [30]. Existing regulatory documents on impact as-
sessment recommend the use of quantitative sensitivity analysis
[7,21]. Official guidelines insist on the importance of taking fac-
tor interactions into account [7,9]. Variance based methods [6,37]
are well suited to this task and have asserted themselves among
practitioners [28,34].

These methods are the computer experiment equivalent of the
experimental design’s analysis of the variance of an experimental
outcome [1]. Unlike experimental design, where the effects of fac-
tors are estimated over levels, variance based methods look at the
entire factors distribution, using customarily Monte Carlo methods
of various sophistication.

The number of terms in the ANOVA decomposition of the vari-
ance of a model with k factors grows as 2k . For this reason in
sensitivity analysis it is customary to compute just two sets of k
indices: the k ‘first order’ effects and the k ‘total’ effects [11,33].
Until recently both sets of indices were rather expensive to esti-
mate, needing a number of model evaluations strictly depending
upon k.
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Following the recent development of metamodels, which pro-
vide cheap emulators of complex and large computational models,
new methods have been proposed to compute sensitivity indices
[20,23,43,45]. The computational cost to estimate an emulator is
generally k-dependent. This k-dependent cost is mostly linked to
the mapping of all possible interactions and much less to the es-
timation of the main effects. Therefore the computation of main
effects by emulators is specially efficient and weakly k-dependent.
Methods based on meta-modeling and emulators have also been
tried to estimate the total sensitivity indices [44,47].

In the present work we do not deal with metamodels, but fo-
cus instead on the sample based methods, trying to improve the
current best available practice [25].

Variance based methods have a long history in sensitivity anal-
ysis. They start with a Fourier implementation in the seventies [6],
and have a milestone in the work of Sobol’ [37]. The total sensi-
tivity indices have been introduced by Homma and Saltelli [11],
although the concept was proposed in [15] (see reviews [10,29,32]
or Chapter eight in [27]).

The paper’s outline is as follows: Section 2 recalls the basic con-
cepts of variance based measures; Section 3 discusses the Monte
Carlo based estimators so far available for the computation of first
order and total sensitivity indices. In Section 4 we focus on the
total sensitivity index and describe two different designs, ‘radial’
and ‘winding-stairs’, for the computation of total indices and com-
pare their economy. Section 5 recalls quasi-random sequences and
the concept of discrepancy. A set of numerical experiments is illus-
trated in Section 6, which also introduces the concept of ‘effective
dimension’. Section 7 summarizes the relevant results.
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Table 1
Notations used in the text.

Symbol

N Sample size
k Number of factors
Xi Generic factor
x ji Generic value for factor Xi taken from row j of Xi

Y Generic scalar model output equal to Y = f (X1, X2, . . . , Xk)

X N × k matrix of input factors
A, B N × k sample matrices of input factors
X∼i N × (k − 1) matrix of all factors but Xi

A(i)
B Matrix, where column i comes from matrix B and all other

k − 1 columns come from matrix A
B(i)

A Matrix, where column i comes from matrix A and all other
k − 1 columns come from matrix B

eSTi (n,k) Economy of a design to compute STi effects, expressed as
elementary effects per run

NT Total cost of a sensitivity analysis in terms of model
evaluations

V Xi (·), E Xi (·) Variance or mean of argument (·) taken over Xi

V X∼i (·), EX∼i (·) Variance or mean of argument (·) taken over all factors
but Xi

2. Sensitivity indices

Given a model of the form Y = f (X1, X2, . . . Xk), with Y a
scalar, a variance based first order effect for a generic factor Xi
can be written as (see notations in Table 1):

V Xi

(
EX∼i (Y | Xi)

)
(1)

where Xi is the i-th factor and X∼i denotes the matrix of all fac-
tors but Xi . The meaning of the inner expectation operator is that
the mean of Y is taken over all possible values of X∼i while keep-
ing Xi fixed. The outer variance is taken over all possible values
of Xi . The associated sensitivity measure (first order sensitivity co-
efficient) is written as:

Si = V Xi (EX∼i (Y | Xi))

V (Y )
. (2)

Due to the known identity [18]:

V Xi

(
EX∼i (Y | Xi)

) + E Xi

(
V X∼i (Y | Xi)

) = V (Y ). (3)

Si is a normalized index, as V Xi (EX∼i (Y | Xi)) varies between zero
and V (Y ). V Xi (EX∼i (Y | Xi)) measures the first order (e.g. additive)
effect of Xi on the model output, while E Xi (V X∼i (Y | Xi)) is cus-
tomarily called the residual.

Another popular variance based measure is the total effect in-
dex [11,31]:

STi = EX∼i (V Xi (Y | X∼i))

V (Y )
= 1 − V X∼i (E Xi (Y | X∼i))

V (Y )
. (4)

STi measures the total effect, i.e. first and higher order effects
(interactions) of factor Xi . One way to visualize this is by consider-
ing that V X∼i (E Xi (Y | X∼i)) is the first order effect of X∼i , so that
V (Y ) minus V X∼i (E Xi (Y | X∼i)) must give the contribution of all
terms in the variance decomposition which do include Xi .

The decomposition equations describing the variance-based
framework are given next. These apply to a square integrable func-
tion Y = f (X1, X2, . . . Xk) defined over Ω , the k-dimensional unit
hypercube,

Ω = (X | 0 � xi � 1; i = 1, . . . ,k). (5)

We further suppose that the factors are uniformly distributed in
[0,1]. The steps of a variance-based framework are as follows:

• Functional decomposition scheme:

f = f0 +
∑

f i +
∑∑

f i j + · · · + f12...k (6)

i i j>i
where f i = f i(Xi), f i j = f i j(Xi, X j) and so on for a total of 2k

terms, including f0. Each term is square integrable over Ω .
Eq. (6) is known as Hoeffding decomposition. See [1,22] for
reviews and [8,24,37] for useful reading. The unicity condition
for (6) is granted by [37]:

1∫
0

f i1,i2,...,is (xi1 , xi2 , . . . , xis )dxiw = 0 (7)

where 1 � i1 < i2 < · · · < is � k and iw ∈ {i1, i2, . . . , is}. The
functions f i1,i2,...,is are obtained from:

f0 = E(Y ),

f i = EX∼i (Y | Xi) − E(Y ),

f i j = EX∼i j (Y | Xi, X j) − f i − f j − E(Y ) (8)

and similarly for higher orders.
• Relation between functions f i1,i2,...,is and partial variances

[37]:

V i = V
(

f i(Xi)
) = V Xi

[
EX∼i (Y | Xi)

]
,

V ij = V
(

f i j(Xi, X j)
)

= V Xi X j

(
EX∼i j (Y | Xi, X j)

) − V Xi

(
EX∼i (Y | Xi)

)
− V X j

(
EX∼ j (Y | X j)

)
(9)

and so on for higher order terms. All terms are linked by:

V (Y ) =
∑

i

V i +
∑

i

∑
j>i

V i j + · · · + V 12...k. (10)

Dividing both sides of the equation by V (Y ), we obtain:∑
i

Si +
∑

i

∑
j>i

Si j + · · · + S12...k = 1. (11)

Relations for the second and higher order terms in (9) as well
as formula (10) hold if the factors are independent, which is the
setting adopted throughout the present work. The case of depen-
dent input factors is not treated in the present paper (see instead
[13,31,46,48]).

Note that given the assumption of independence of input fac-
tors we may avoid to explicitly include the probability distribution
function pi of factor Xi in the integrals for the estimates of func-
tions in (8). This implies that notation

∫
f i(xi)dxi can be used in

place of the more verbose
∫

f i(xi)pi(xi)dxi , as the factors pdf may
be embedded in the function f i(xi). Without loss of generality all
factors can be conceived as defined in Ω and the mapping from
Ω to the actual distribution of Xi is intended to be part of the
definition of f .

Indices Si , STi can also be interpreted in terms of expected re-
duction of variance. This interpretation also holds when the input
factors are not independent [31]:

• V Xi (EX∼i (Y | Xi)) is the expected reduction in variance that
would be obtained if Xi could be fixed.

• EX∼i (V Xi (Y | X∼i)) is the expected variance that would be
left if all factors but Xi could be fixed. This holds since
V X∼i (E Xi (Y | X∼i)) is the expected reduction in variance that
would be obtained if all factors but Xi could be fixed.

For this reason Jansen [14] calls V Xi (EX∼i (Y | Xi)) and
EX∼i (V Xi (Y | X∼i)) top and bottom marginal variances, respectively.
For additive models the two terms coincide, as STi may be simply
viewed as Si plus all interaction terms including factor Xi .
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3. Best practices for the simultaneous computation of Si and STi

We discuss here existing estimators to compute in a single set
of simulations both sets of indices Si and STi . By ‘simulation’ we
mean here the computation of an individual value for Y corre-
sponding to a sampled set of k factors X1, X2, . . . , Xk .

We imagine to have two independent sampling matrices A
and B, with a ji and b ji as generic elements. The index i runs from
one to k, the number of factors, while the index j runs from one
to N , the number of simulations. We now introduce matrix A(i)

B

(B(i)
A ) where all columns are from A (B) except the i-th column

which is from B (A). Si can be computed from either the couple of
matrices A,B(i)

A or B,A(i)
B , e.g.:

V Xi

(
EX∼i (Y | Xi)

) = 1

N

N∑
j=1

f (A) j f
(
B(i)

A

)
j − f 2

0 (12)

where (B) j denotes the j-th row of matrix B [37].
The computation of STi proceeds from definition (4), where

V X∼i (E Xi (Y | X∼i)) is obtained from [11]:

V X∼i

(
E Xi (Y | X∼i)

) = 1

N

N∑
j=1

f (A) j f
(
A(i)

B

)
j − f 2

0 . (13)

Where do Eqs. (12) and (13) come from? A demonstration is
outlined here for Eq. (12) following [12,25]. Applying the known
relation V (Y ) = E(Y 2) − E2(Y ) to V Xi (EX∼i (Y | Xi)) one obtains:

V Xi

(
EX∼i (Y | Xi)

) =
∫

E2
X∼i

(Y | Xi)dXi −
(∫

EX∼i (Y | Xi)dXi

)2

.

While the latter term above is clearly (E(Y ))2 ≡ f 2
0 , the former

integral can be rewritten by expressing E2
X∼i

(Y | Xi) as an integral
in 2(k − 1) dimensions:

E2
X∼i

(Y | Xi) = EX∼i (Y | Xi)EX∼i (Y |Xi)

=
∫ ∫

f (X1, X2, . . . , Xi, . . . , Xk)

× f
(

X ′
1, X ′

2, . . . , Xi, . . . , X ′
k

)
dX∼i dX′

∼i (14)

and∫
E2

X∼i
(Y | Xi)dXi

=
∫ ∫

f (X1, X2, . . . , Xi, . . . , Xk)

× f
(

X ′
1, X ′

2, . . . , Xi, . . . , X ′
k

)
dX dX′

∼i . (15)

Eq. (15) is the expectation value over 2k − 1 variables, i.e.
X1, . . . , Xk , X ′

1, . . . , Xi, . . . , X ′
k , of the function f (X1, . . . , Xi, . . . , Xk)

f (X ′
1, . . . , Xi, . . . , X ′

k).
This explains the Monte Carlo estimation in Eq. (12). In fact

within the product f (B) j f (A(i)
B ) j needed to compute Si (12), the

arguments B and A(i)
B have in common the coordinate Xi as in

Eq. (15) above. Moving from (B) j to (A(i)
B ) j can be seen as a step

in the non-Xi direction, i.e. a step along X∼i (Fig. 1).
An analogous demonstration can be made for Eq. (13). Consider

the product f (A) j f (A(i)
B ) j needed to compute STi (13). Here the

arguments A and A(i)
B have in common the coordinates X∼i , and

can thus be seen as separated by a step in the Xi direction (Fig. 1).
All that is needed to compute both sets of Si and STi for the k

factors is the triplet of matrices A, B, B(i)
A or alternatively (equiva-

lently) the triplet of matrices A, B, A(i) . As shown in (12) and (13)
B
Fig. 1. Row w of matrix A and row w of matrix A(i)
B can be seen as separated by

a step in the direction Xi . Likewise row w of matrix A(i)
B is separated by row w of

matrix B by a step along the X∼i direction. Finally row w of matrix A(i)
B and that of

A( j)
B are separated by a step along Xi j , i.e. moving both factors Xi and X j .

above, the latter is used in the present work. It can be anticipated
that this choice is driven by the use of quasi-random sequences
discussed later in this paper (Section 5.1). In a sense that will be
clarified later, the points of matrix A, and hence of A(i)

B , are better

distributed than the points of B and B(i)
A when using quasi-random

points.
2 · N simulations are needed for computing Y corresponding

to matrices A,B while k · N simulations are needed to compute
Y from matrices A(i)

B for all factors. As a result the cost of the
analysis is N · (k + 2) with N a sufficiently large number (500 or
higher). Computing the output for both A(i)

B and B(i)
A would imply

an additional cost of kN simulations.
Estimator (12) for Si has been improved by [25,41] who pro-

posed:

V Xi

(
EX∼i (Y | Xi)

) = 1

N

N∑
j=1

f (A) j
(

f
(
B(i)

A

)
j − f (B) j

)
. (16)

In the present paper we suggest a further improvement which
uses the triplet A, B and A(i)

B instead of the original formulation

which uses B, A and B(i)
A . This improvement is related to the use

of quasi-Monte Carlo samples as will be discussed in Section 5.1,
while the triplet modification would have no impact by using pure
Monte Carlo samples. The improvement is supported by simula-
tions carried out in the present work. Details are not reported here
since both estimators (12) and (16) for Si have been outperformed
by better practices, as described in [20,45,46]. Other good practices
are also available to obtain EX∼i (Y | Xi) [23,43] which in turn can
be used for Si estimates. These are not reviewed here given the
present paper’s focus on STi .

A numerical improvement of estimator (13) for STi has been
proposed in [39]:

V X∼i

(
E Xi (Y | X∼i)

)

= V (Y ) − 1

N

N∑
j=1

f (A) j
(

f (A) j − f
(
A(i)

B

)
j

)
. (17)

Alternative forms for the estimators of Si and STi are offered
by Jansen [14,15] where V Xi (EX∼i (Y | Xi)) needed to compute Si
is obtained from:

V Xi

(
EX∼i (Y | Xi)

) = V (Y ) − 1

2N

N∑
j=1

(
f (B) j − f

(
A(i)

B

)
j

)2
. (18)

Jansen’s formula for STi proceeds via EX∼i (V Xi (Y | X∼i)) rather
than via V X∼i (E Xi (Y | X∼i)) (see Eq. (4)):

EX∼i

(
V Xi (Y | X∼i)

) = 1

2N

N∑(
f (A) j − f

(
A(i)

B

)
j

)2
. (19)
j=1
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Table 2
Formulas to compute Si and STi (in square brackets the corresponding most rep-
resentative reference). Formula (b) for Si uses the triplet A, B and A(i)

B instead of

formulation in (16), which uses B, A and B(i)
A . Analogously we propose here to com-

pute numerical estimates of (19) using quasi-random numbers in the setting A, A(i)
B .

This leads to (f) which is the best practice so far for STi .

V Xi (EX∼i (Y |Xi)) for Si Reference

(a) 1
N

∑N
j=1 f (A) j f (B(i)

A ) j − f 2
0 ‘Sobol’ 1993’ [37]

(b) 1
N

∑N
j=1 f (B) j( f (A(i)

B ) j − f (A) j) [this paper]

(c) V (Y ) − 1
2N

∑N
j=1( f (B) j − f (A(i)

B ) j)
2 ‘Jansen 1999’ [14]

EX∼i (V Xi (Y | X∼i)) for STi

(d) V (Y ) − 1
N

∑N
j=1 f (A) j f (A(i)

B ) j + f 2
0 ‘Homma 1996’ [11]

(e) 1
N

∑N
j=1 f (A) j( f (A) j − f (A(i)

B ) j) ‘Sobol’ 2007’ [39]

(f) 1
2N

∑N
j=1( f (A) j − f (A(i)

B ) j)
2 ‘Jansen 1999’ [14] and [this paper]

In the following we shall refer to the estimator (17) as ‘Sobol’
2007’ [39] and to the estimator (19) as ‘Jansen 1999’. Table 2 pro-
vides all the estimators for Si and STi described so far.

Estimator (f) in Table 2 (‘Jansen 1999’) has been proved to be
more efficient than estimator (d) for total order effects. The proof
is Theorem 4 in [38], that compares their variances.

Given that estimator (e) can be easily derived from (d) (by just
rewriting V (Y ) in (d) as E(Y 2) − E2(Y ) and reordering the terms),
it follows that estimator (f), ‘Jansen 1999’, is also better than (e).

In the present work we propose to use quasi-random numbers
in the setting A,A(i)

B to compute STi estimates. The best practice
for STi is thus estimator (f) shown in Table 2. All these conclusions
will be tested numerically in Section 6.

Although the quest for better designs and estimators is still ac-
tive, see e.g. [26], the strategies just described are so far the most
efficient to compute a full set of k Si and STi terms based on real
function point values, i.e. without using emulators (see Section 1).

The same simulations made for the estimation of the total ef-
fects can also be used to estimate k(k − 1)/2 total effects of pairs
of factors, through a straightforward generalization of Jansen’s es-
timator (Fig. 1):

EX∼i j

(
V Xi X j (Y | X∼i j)

) = 1

2N

N∑
w=1

(
f
(
A(i)

B

)
w − f

(
A( j)

B

)
w

)2
. (20)

This extension is somehow implicit in [25], as therein the main
effect of all-factors-but-two is introduced, which is simply the un-
conditional variance minus EX∼i j (V Xi X j (Y |X∼i j)), see Eq. (3). Still
total effects of couples of factors as computed from Eq. (20) are
introduced in the present paper for the first time. These estimates
are not independent from those of the total effect for single fac-
tors, as all are based on the same simulations.

According to [19] the economy of a method can be defined as
the ratio ‘effects’ versus ‘data points’. The best practices described
in the present section can generate as many as N individual esti-
mates1 of STi for each of the k, factors. Thus, neglecting the first
order indices and the total effect for pairs just described, and using
model outputs corresponding to matrices A, A(i)

B only (for a total of
N(k + 1) simulations), an STi-specific economy eSTi can be defined
as:

eSTi = kN

N(k + 1)
∼ 1. (21)

1 An individual estimate is obtained by a single couplet f (A) j f (A(i)
B ) j , corre-

sponding to two suitably chosen rows of the sampling matrices. A sensitivity index
is obtained averaging the N individual estimates.
Table 3
First block of size q = k+1 runs for a Monte Carlo simulation for sensitivity analysis.
Radial (left-hand) and winding stairs (right-hand) schemes are compared. k Xi steps
are generated using either design. N such blocks will be needed for the analysis for
a total computation cost of NT = N(k + 1).

Radial sampling Step Winding stairs

a1,1,a1,2,a1,3, . . . ,a1,k a1,1,a1,2,a1,3, . . . ,a1,k

b1,1,a1,2,a1,3, . . . ,a1,k X1 b1,1,a1,2,a1,3, . . . ,a1,k

a1,1,b1,2,a1,3, . . . ,a1,k X2 b1,1,b1,2,a1,3, . . . ,a1,k

a1,1,a1,2,b1,3, . . . ,a1,k X3 b1,1,b1,2,b1,3, . . . ,a1,k

· · · · · ·
a1,1,a1,2,a1,3, . . . ,b1,k Xk b1,1,b1,2,b1,3, . . . ,b1,k

4. Computational scheme for STi

To compute STi from formula (f), which represents the best
practice so far, the design matrices A and A(i)

B have to be set-up.
Different methods may be used. In the following two different de-
signs are compared: the first, called ‘radial design’, has been firstly
presented in [25]; the second, called ‘winding design’ derives from
the method discussed in [14]. The two designs are illustrated in
Table 3. Let us focus first on the left-hand side. This shows how
– starting from the fist row made of elements from matrix A,
a step in the X1 direction (second row) is generated by drawing
a row from the re-sample matrix A(1)

B , where all entries are from
A but the first which is from B. Likewise the third row is from
matrix A(2)

B , the fourth from A(3)
B and so on till the last row is

selected from matrix A(k)
B . In this way k steps have been gener-

ated in directions from X1 to Xk . All steps involve the first point
(a1,1,a1,2,a1,3, . . . ,a1,k). The entire left-hand side of Table 3 is a
block of dimension q = 1 + k. A full sensitivity analysis will be
composed by N such blocks, the total cost of the analysis being
thus NT = N(1 + k). In the following this design, based on Sobol’
[37] and Saltelli [25], shall be referred to as ‘radial’, due to the
symmetry of the sampling with respect to the first row in each
block.

The right-hand side of Table 3 shows an alternative sampling
scheme, derived from ‘winding stairs’ design originally due to
Jansen [14].2 In this design each row is a step away from the pre-
vious row (and not from the first row). With the first two winding
stairs rows a step X1 is generated. A step X2 is now generated be-
tween the second and the third row. Likewise a step X3 involves
rows third and fourth and so on.

Both designs produce k STi elementary effects at the cost of
k + 1 runs, and have thus the same economy eSTi = k

k+1 ∼ 1. In
both designs the block is constructed using only a single row of
matrices A, B (Table 3). Note that we have slightly adapted the
original winding stairs formulation in using the re-sample ma-
trix B.

In the attempt of improving the design shown in Table 3, we
now try to move from a scheme based on just two matrices A, B
of ‘sample’ and ‘re-sample’ to a scheme with a number n of ‘re-
sample’ matrices B1,B2, . . . ,Bn , with the case n = 1 corresponding
to the existing practice (Table 3). In this way instead of a single
step for e.g. X1 as shown in Table 3 there will be n such steps.

2 By way of example the first three rows of an original four-dimensional wind-
ing stairs sequence are given below. A single generic sample matrix X is used. The
interested reader might identify in this sequence nine steps of the type X∼i and
eleven steps of the type Xi . Over longer sequences winding stairs averages to two
effects (one Si and one STi) per point

x1,1, x1,2, x1,3, x1,4 x1,1, x2,2, x1,3, x1,4 x1,1, x2,2, x2,3, x1,4 x1,1, x2,2, x2,3, x2,4

x2,1, x2,2, x2,3, x2,4 x2,1, x3,2, x2,3, x2,4 x2,1, x3,2, x3,3, x2,4 x2,1, x3,2, x3,3, x3,4

x3,1, x3,2, x3,3, x3,4 x3,1, x4,2, x3,3, x3,4 x3,1, x4,2, x4,3, x3,4 x3,1, x4,2, x4,3, x4,4.
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Table 4
Ten-dimensional Sobol’ quasi-random sequence. First eight points.

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.7500 0.2500
0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.2500 0.7500
0.1250 0.6250 0.8750 0.8750 0.6250 0.1250 0.3750 0.3750 0.8750 0.6250
0.6250 0.1250 0.3750 0.3750 0.1250 0.6250 0.8750 0.8750 0.3750 0.1250
0.3750 0.3750 0.6250 0.1250 0.8750 0.8750 0.1250 0.6250 0.1250 0.8750
0.8750 0.8750 0.1250 0.6250 0.3750 0.3750 0.6250 0.1250 0.6250 0.3750
0.0625 0.9375 0.6875 0.3125 0.1875 0.0625 0.4375 0.5625 0.8125 0.6875
In the first row the ‘sample’ points are always the same, while
there are n ‘re-sample’ points instead of just one. The same for
the other factors. The dimension of a block is now q = nk + 1 runs
instead of q = k + 1 as in Table 3. The n steps for each factor Xi
can be used to compute as many as

(n+1
2

) = n(n +1)/2 steps of the
type Xi , useful to compute STi effects. The idea of modifying radial
and winding designs with n > 1 re-sample points stems from the
possibility of increasing the STi-specific economy (21), which in the
modified design is:

eSTi = nk(n + 1)

2nk + 2
= O (n). (22)

A possible drawback of using n > 1 is that the
(n+1

2

)
steps of

the type Xi are not independent from one another.
A winding stairs trajectory for n = 1 is the same as the ‘Mor-

ris’ trajectory [19], which is used in a screening, semi-quantitative
form of sensitivity analysis [4].

Table 3 shows that by design a radial sampling block is mostly
populated by points of the ‘sample’ run, i.e. by elements of A,
while in winding stairs there is a more balanced use of elements
from A and B. Another useful remark is that for both designs each
block is internally balanced (contains the same number of effects
STi for each factor), so that we can increase the blocks arbitrarily
without worrying about the balance of the design. This property
is useful when estimating the error in the design. In his original
work Sobol’ proposes to use Monte Carlo probable error to esti-
mate the error in the computation of the sensitivity indices [37].
In [1] bootstrapping of the elementary effect is suggested instead.
The balanced block-based design just described lends itself natu-
rally to an approach based on bootstrapping the blocks themselves
(see example in Section 6.3).

5. Exploration of the input factor space

5.1. Using Sobol’ quasi-random sequences

Several types of quasi-random (QR) sequences have been sug-
gested by Faure, Niederreiter, Halton, Hammersley, Sobol’ and other
investigators, see Bratley and Fox [3] for a review of these works.

QR sequences are specifically designed to generate samples of
X1, X2, . . . , Xk as uniformly as possible over the unit hypercube Ω .

Unlike random numbers, successive quasi-random points know
about the position of previously sampled points and fill the gaps
between them. For this reason they are also called quasi-random
numbers although they are not random at all.

We do not compare the performance of different QR sequences,
but limit ourselves for the present work to an updated version of
Sobol’ QR sequences [35,36] which is characterized by low discrep-
ancy properties (sequence # 8192 by S. Kucherenko [16]).

Sobol’s sequences outperform crude Monte Carlo sampling in
the estimation of multi-dimensional integrals [40]. The first eight
points of a ten-dimensional Sobol’s quasi-random sequence are
given, as an example, in Table 4.

Matrices A and B of size (N,k) can be easily generated from
a quasi-random sequence of size (N,2k): A is the left half of the
quasi-random sequence, and B is the right part of it. The following
considerations might be of use for practitioners:

1. The uniformity of the quasi-random sequence is linked to the
ordered and progressive filling of the space, which is filled, at
a given density, every 2m points (m = 1,2, . . .). Thus, it would
be a mistake to skip rows of the quasi-random matrix.

2. The uniformity of the quasi-random matrix deteriorates as the
column index increases, with the first column in Table 4 being
the best equidistributed in [0,1] [42].

The triplet A, A(i)
B and B contains a higher number of better

points, in the sense of consideration 2 above, with respect to the
alternative triplet A, B(i)

A and B. The former triplet is then preferred
to compute Si and STi . Based on this argument we would advice
practitioners to use formula (b) in Table 2 for Si , instead of the
formula in [41].

5.2. Exploration and discrepancy

Economy in the computation of the indices – as defined by
(21) – is not the only consideration needed for a good design.
Also important is that the k-dimensional space is explored effi-
ciently. Due to the well-known ‘curse of dimensionality’, most of
the space in a k-dimensional cube is away from the centre3 and
effective designs need to be good at exploring corners and edges.
Sobol’ sequences are quite effective in multi-dimensional explo-
ration, in that they are characterized by low ‘discrepancy’ [35,36].
Imagine an hypercube with N points inside. Its theoretical den-
sity is hence dt = 1/N . Discrepancy is defined by Sobol’ as the
maximum deviation between dt and the point density di in an
arbitrary hyper-parallelepiped Pi built within the hypercube. The
discrepancy D is hence the maximum of this over all possible par-
allelepipeds.

D = max
Pi

|di − dt |. (23)

In the following comparison of radial and winding stairs, and of
n = 1 with n > 1, these considerations apply:

• There is a natural trade off between exploration and economy:
the more we re-use the same point or coordinate, (e.g. by in-
creasing n) the less we explore the hypercube.

• The higher the value of n, the more certain coordinates are
repeated at the expenses of others, so small n is more explo-
rative. To make an example, for k = 3, and a total of NT = 28
simulations, we can either use seven blocks with n = 1 or four
blocks with n = 2. In the former case N(1 + 1) = 14 origi-
nal points are needed, in the latter N(1 + 2) = 12 points are

3 A way to illustrate the curse of dimensionality is to consider a hypersphere
contained into a hypercube and tangent to its faces. The ratio of the volume of
the hypersphere to that of the hypercube goes to zero rapidly with increasing the
number of dimensions k. For k = 3 the ratio is about one half, and becomes 0.002
for k = 10.
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Fig. 2. Left: gi function for ai = 0,1,9. Right: g∗
i function for ai = 1, δi = 0.3 and αi = 0.5,1,2.
needed. This implies that the average use of a given coordi-
nate is 28

14 = 2 for n = 1 and 28
12 ∼ 2.3 for n = 2, indicating that

n = 1 is more explorative than n = 2.

In summary:

1. The larger n, the less explorative the design.
2. A trade-off between exploration and economy exists but we

are unable to judge a-priori if n > 1 improves the results of
the analysis because of better economy or makes them worse
because of poorer exploration.

6. Numerical experiments

The following research questions concerning the estimation
of STi are tackled here:

1. Which is the best estimator for STi between estimators (e) and
(f) in Table 24?

2. Which is the best strategy between winding stairs and radial
sampling?

3. Is n > 1 convenient with either of the above strategies?
4. Is the answer to the questions above dependent upon the ty-

pology of the function f (X1, X2, . . . , Xk)?

The numerical experiment is based on a set of test cases for
which the analytic value of STi is available.

6.1. Effective dimensionality

The difficulty of a test case for sensitivity depends upon how
many of the k factors have an effect on the output, as well as upon
the order and strength of interactions.

The concept of ‘effective dimensionality’ for sensitivity analysis
was introduced by Kucherenko and co-workers [17]. Two measures
were proposed by these authors, termed respectively ‘truncation’
dt and ‘superposition’ ds .

Let |u| be the cardinality of a set of factors u. The effective
dimension in the superposition sense dS is the smallest integer dS

such that:∑
0<|u|�dS

Su � (1 − ε). (24)

Effective dimension dS is the order of the highest effect one
needs to include in the sum

∑
0<|u|�dS

Su in order to reach the
(1 − ε) target.

4 Estimator (d) of Table 2 has not been included in the numerical experiments
because already improved by estimator (e) as shown in [39].
Effective dimension in the truncation sense dT is the smallest
integer such that:∑
u⊆{1,2,...dT }

Su � (1 − ε), (25)

where u is as above a set of factors. Dimension dT is the high-
est number of factors which need to be included in the sum∑

u⊆{1,2,...,dT } Su in order to reach the (1 − ε) target. Note that dT

depends on the order of the factors, therefore dT may be reduced
by reordering the factors in decreasing order of importance.

The knowledge of a full set of sensitivity indices Si and STi for
the k factors gives a posteriori, i.e. after the sensitivity analysis,
a picture of the difficulty of a test case as well as a precise value
for dS and dT above.

If all the Si are comparable, this means that there are no non-
influential factors, and we a large dT (25). If there are no interac-
tions, then dS = 1. On the contrary, if Si

STi
� 1 for several factors,

that is high interactions, then we have a large dS (24)). For a dis-
cussion see [17].

6.2. Test cases

The mathematical functions used as test cases are given in the
following, where all input factors Xi are assumed to be uniformly
distributed in the interval [0,1]. Their analytic sensitivity indices
are given in Appendix A.

A function which can be used to generate test cases over a wide
spectrum of difficulties is Sobol’s G function, [1], defined as:

G = G(X1, X2, . . . , Xk,a1,a2, . . . ,ak) =
k∏

i=1

gi,

gi = |4Xi − 2| + ai

1 + ai
(26)

where ai ∈ R+ ∀i = 1, . . . ,k. The typology of the function G is
driven by the dimensionality k as well as by the value of the co-
efficients ai . Low values of ai , such as ai = 0, imply an important
first order effect (see Fig. 2).

If more than one factor has low ai ’s, then high interaction ef-
fects will also be present. The worst case for this function is where
all ai ’s are zero, i.e. all factors are equally important and all fac-
tors interact. If only a couple of ai ’s are zero and all others are
large (e.g. ai � 9) then we have a relatively easy test case, with
just two important factors and a single two-way interaction term.
Function G has a singularity in each of its k dimensions corre-
sponding to the points xi = 1

2 (Fig. 2). The Sobol’ quasi-random
sequence starts with such a point (Table 4). For this reason, in
order not to give to the tested design an unfair advantage, a modi-
fied, shifted, and possibly curved version of G is introduced in this
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Table 5
Definition of test cases G∗ .

Function
name

αi parameters ai parameters

G∗
1 αi = 1, i = 1,2, . . . ,10 ai = (0,0,9,9,9,9,9,9,9,9)

G∗
2 αi = 1, i = 1,2, . . . ,10 ai = (0,0.1,0.2,0.3,0.4,0.8,1,2,3,4)

G∗
3 αi = 0.5, i = 1,2, . . . ,10 ai = (0,0,9,9,9,9,9,9,9,9)

G∗
4 αi = 0.5, i = 1,2, . . . ,10 ai = (0,0.1,0.2,0.3,0.4,0.8,1,2,3,4)

G∗
5 αi = 2, i = 1,2, . . . ,10 ai = (0,0,9,9,9,9,9,9,9,9)

G∗
6 αi = 2, i = 1,2, . . . ,10 ai = (0,0.1,0.2,0.3,0.4,0.8,1,2,3,4)

work (Fig. 2):

G∗(X1, X2, . . . , Xk,a1,a2, . . . ,ak, δ1, δ2, . . . , δk,α1,α2, . . . ,αk)

=
k∏

i=1

g∗
i , (27)

g∗
i = (1 + αi) · |2(Xi + δi − I[Xi + δi]) − 1|αi + ai

1 + ai
(28)

where δi ∈ [0,1], αi > 0 are shift and curvature parameters respec-
tively, I[Xi + δi] is the integer part of Xi + δi , and g∗

i reverts to gi
for δi = 0 and αi = 1.

In the test cases that follow the G∗ function has been run with
k = 10. Values for coefficients αi and ai are indicated in Table 5. As
the sensitivity indices do not depend from coefficients δi (see Ap-
pendix A) their values are randomly assigned at each Monte Carlo
trial.

Function G∗
1 is ‘easy’ in both the sense of (25) and of (24). Func-

tion G∗
2 is rather ‘difficult’ in both (25) and (24) sense. Functions

G∗
3, G∗

4 are a concave version of G∗
1, G∗

2, while functions G∗
5, G∗

6 are
a convex version of G∗

1, G∗
2.

Another test case used in this work is from [2] and used in [17];
for k factors:

K =
k∑

i=1

(−1)i
i∏

j=1

X j (29)

whose analytic STi (this work) is given in Appendix A. This func-
tion is ‘easy’ in the sense of (25), i.e. not all factors are equally
important, and less easy in the sense of (24) as it has important
interactions.

The last test case is from [28]:

B =
m∑

i=1

Xi · ωi (30)

with m = 5, X ∼ N(0, σX ), ωi ∼ N(0, σωi ), {σXi ; i = 1, . . . ,5} =
{1,1.1,0.9,1.2,0.8}, and {σωi ; i = 1, . . . ,5} = {0.7,1.3,1.4,0.6,

0.95}. This is another ten-dimensional test case, difficult in terms
of (25) – all factors are relatively important – and less difficult in
terms of (24) – interactions only between couples of Xi , ωi .

6.3. Simulation results

The numerical experiment involves 50 replicas of the estima-
tion procedure for functions G∗ , K and B all tested with 10 total
number of parameters. The replicas are obtained differently for dif-
ferent functions.

• For the G∗ functions the shift parameters δi were randomly
selected. This is permitted as the analytical value of STi does
not depend on δi , see Eq. (34) in Appendix A.

• For the K and B functions replicas of matrices A and B are
obtained increasing the row index of Sobol’ quasi-random se-
quence. For example the second replica uses the Sobol’ se-
Table 6
Pairwise simulations discussed in the paper.

‘Sobol’ 2007’ vs
‘Jansen 1999’

A, A(i)
B vs

B, B(i)
A

Radial vs
Winding stairs

Radial n = 1
and n > 1

‘Sobol’ 2007’ A,A(i)
B Radial n = 1

‘Jansen 1999’ A,A(i)
B Radial n = 1

‘Jansen 1999’ B,B(i)
A Radial n = 1

‘Jansen 1999’ A,A(i)
B Radial n = 1

‘Jansen 1999’ A,A(i)
B Winding stairs n = 1

‘Jansen 1999’ A,A(i)
B Radial n = 1

‘Jansen 1999’ A,A(i)
B Radial n > 1

‘Jansen 1999’ A,A(i)
B Radial n = 1

Fig. 3. ‘Jansen 1999’ estimator vs ‘Sobol 2007’ estimator for STi: best case – K func-
tion.

quence from row N + 1 to 2N; the third from 2N + 1 to 3N
and so on.

Simulation results are shown in terms of a mean absolute error
MAE versus the total cost NT of the analysis, where MAE is defined
as:

MAE = 1

50

50∑
j=1

k∑
i=1

∣∣ Ŝ Ti ( j) − STi

∣∣.
Table 6 summarizes our computational experiment which con-

sists of a stepwise, top-down process where two methods (e.g.
‘Sobol’ 2007’ vs ‘Jansen 1999’ or Radial vs Winding) are compared
for all test functions at each step. Not all functions’ plots shall be
presented. For economy of space, for each conclusion only two
functions are given: the one corresponding to the smallest mean
absolute error MAE (best case) and the one corresponding to the
highest (worst case). For each step of the computational experi-
ment the two methods compared give the highest and the lowest
MAE in correspondence to the same test function. The behaviour
of all other test functions must be understood to be in between
these two extremes.

‘Sobol’ 2007’ vs ‘Jansen 1999’ estimator. The new ‘Sobol’ 2007’ es-
timator [39] for STi (17) is compared against that of ‘Jansen 1999’
[14] (19). Figs. 3 and 4 show respectively the best test case, func-
tion K , and the worst one, function G∗

6. Both methods converge
at large NT . Jansen’s measure always performs best. As discussed
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Fig. 4. ‘Jansen 1999’ estimator vs ‘Sobol 2007’ estimator for STi: worst case – G∗
6

function.

Fig. 5. Comparison of A, A(i)
B vs B, B(i)

A in the estimation of STi: best case – G∗
3

function.

in Section 3, this result is in line with the fact that ‘Jansen 1999’
estimator is more efficient than ‘Sobol’ 2007’ estimator, as can be
derived from [38] (Theorem 4). In the follow up of the experiment
the Jansen’s estimator has been used.

Comparing A, A(i)
B with B, B(i)

A . In Figs. 5 and 6 we compare the
‘Jansen 1999’ estimator coupled to Saltelli 2002 design [25], based
on matrices B, B(i)

A , against the same design using matrices A, A(i)
B

for n = 1. Both methods converge for large NT . Best and worst
case are for functions G∗

3 and G∗
6 respectively. The method based

on A, A(i)
B is more often better than B, B(i)

A and is hence used in
the following.

Comparing radial with winding stairs. Figs. 7 and 8 show the best
and worst test case, functions K and G∗

6 respectively, for the com-
parison of radial sampling against winding stairs for n = 1. Both
methods converge. Radial sampling is always better or equal to
winding stairs.
Fig. 6. Comparison of A, A(i)
B vs B, B(i)

A in the estimation of STi: worst case – G∗
6

function.

Fig. 7. Radial estimator vs winding stairs estimator for STi: best case – K function.

Fig. 8. Radial estimator vs winding stairs estimator for STi: worst case – G∗
6 function.
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Fig. 9. Radial estimator for STi – n = 1 vs radial n = 2 and n = 3: best case – G∗
3

function.

Fig. 10. Radial estimator for STi – n = 1 vs radial n = 2 and n = 3: worst case – G∗
6

function.

Comparing radial n = 1 and n > 1. The comparison of n = 1 ver-
sus n > 1 (n = 2 and n = 3) for radial sampling shows that n = 1
is always better than n > 1, with constant deterioration of the es-
timates as n increases. This did not encourage us to test higher
values of n. Fig. 9 shows the best case, function G∗

3, while Fig. 10
gives the worst case, function G∗

6. Note that in this case the con-
vergence curves at varying n are obtained by adjusting the value
of N , number of blocks, following the rule N(kn + 1) ≡ NT .

Dependence upon the typology of the test function. As seen from
Figs. 3–10 the choice of the test function affects the MAE values
but not the conclusions so far drawn on the relative merit of the
tested algorithms.

All possible combinations of:

• radial sampling versus winding stairs, and
• n = 1 versus n > 1

have been tested for ‘Jansen 1999’ estimator and design matrices =
A,A(i)

B . Since outcomes from these analyses confirm the results just
described, they are not shown here.
In Section 4 we discussed bootstrapping the blocks to obtain
confidence bounds for the sensitivity indices. In Figs. 11 and 12
we show an example of estimation of 90% confidence bounds of
total indices for single factors and for pairs of factors based on the
B analytic function given in (30).

7. Conclusions

The theory and the computational tools available to compute
total sensitivity indices STi have been revised. The main motiva-
tion for the present work is that previous comparisons of different
methods to estimate STi were based on incomplete combinations
of sampling designs and estimators [5] or a limited set of test
functions [25]. In this work a larger set of test functions has been
employed reflecting different degrees of linearity, additivity and ef-
fective dimension. Further the simulations have been performed
over all possible combinations of sampling designs and estimators,
although we have not tested alternative quasi-random sequences
(Section 5.1).

In conclusion, the present work indicates that the best esti-
mates are obtained using the following choices:

1. Jansen’s estimator.
2. Quasi-random number in the A, A(i)

B configuration.
3. Radial sampling.
4. n = 1.

Note that k + 1 simulations per block are sufficient to compute
all STi terms for k factors plus the estimates for the k(k−1)

2 total
effects for pairs of factors, Eq. (20).

Wishing to compute simultaneously also the Si one would need
one more simulation per block, the extra run corresponding to el-
ements of the matrix B.

While results (1) and (2) above have an analytic justification as
described in the text (see Sections 3 and 5), results (3) and (4) are
empirical, be they based on a large basis of test functions. These
latter findings can be interpreted as a result of the optimality of
the points of matrix A (left-most points of Sobol’ quasi-random
sequence):

• Radial vs winding stairs: as evident from Table 3, winding
stairs design is poorer in A matrix elements than radial de-
sign, hence the poorer performance of winding stairs.

• n = 1 vs n > 1: similarly to the above, the n > 1 approach
enriches the design with B elements reducing the share of A
elements. Further the estimates obtained increasing n are not
independent from one another.

The total effect index is a summary sensitivity measure in-
clusive of interactions effect of any order. According to a recent
regulatory document [7] (p. 24): “Sensitivity analysis can be used
to explore how the impacts of the options you are analysing would
change in response to variations in key parameters and how they
interact.” Similarly a recent guideline for environmental models
[9] (p. 55) suggest that: “[SA] methods should preferably be able
to deal with a model regardless of assumptions about a model’s
linearity and additivity, consider interaction effects among input un-
certainties, [· · ·].”

The present analysis of the best practice available to compute
the total sensitivity index is perhaps timely in light of this in-
creased recognition of the importance of accounting for factors’
interaction in sensitivity analysis.
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Fig. 11. Total sensitivity indices (circles) and 90% confidence intervals (vertical dashed lines) estimated via Monte Carlo method for factors Xi , i = 1, . . . ,5, of the B function.
The crosses indicate the analytic values. Total sensitivity indices for ωi , i = 1, . . . ,5, are identical to those for Xi , due to the symmetry of the B function. The total indices
were estimated using formula (19) with N = 1000 as sample size. Monte Carlo confidence intervals were obtained using a sub-sample of size 100 with 10 000 replicas.

Fig. 12. Total sensitivity indices and 90% confidence intervals estimated via Monte Carlo method for all pairs of factors Xi & X j of the B function. The crosses indicate the
analytic values. Total sensitivity indices for pairs ωi & ω j are identical to those for pairs Xi & X j , given the symmetry of the B function. The total indices were estimated
using formula (20) with N = 1000 as sample size. Monte Carlo confidence intervals were obtained using a sub-sample of size 100 with 10 000 replicas.
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Appendix A. Analytical test cases

1. G-function

G = G(X1, X2, . . . , Xk,a1,a2, . . . ,ak) =
k∏

i=1

gi,

gi = |4Xi − 2| + ai

1 + ai
(31)

where all input factors Xi are assumed to be uniformly distributed
in the interval [0,1] and ai ∈ R+ ∀i = 1, . . . ,k. The sensitivity in-
dices for G can be obtained analytically from:

V i = V Xi

(
EX∼i (Y | Xi)

) = 1/3

(1 + ai)
2
,

V
(

E(Y |Xi1 , Xi2 , . . . , Xis )
) =

s∏
j=1

(1 + V i j ) − 1,

V Ti = V i

∏
(1 + V j),
j 
=i
V =
k∏

i=1

(1 + V i) − 1. (32)

2. G∗-function

G∗(X1, . . . , Xk,a1, . . . ,ak, δ1, . . . , δk,α1, . . . ,αk) =
k∏

i=1

g∗
i ,

g∗
i = (1 + αi) · |2(Xi + δi − I[Xi + δi]) − 1|αi + ai

1 + ai
(33)

where all input factors Xi are assumed to be uniformly distributed
in the interval [0,1]; ai ∈ R+ ∀i = 1, . . .k; δi ∈ [0,1], αi > 0 are
shift and curvature parameters respectively; I[Xi +δi] is the integer
part of Xi + δi , and g∗

i reverts to gi for δi = 0 and αi = 1.
The mean of each element in the products in the modified G∗

function is 1 (as in the standard G function), while its variance is:

V i
(
G∗(Xi,ai,αi)

) = α2
i

(1 + 2αi)(1 + ai)
2
. (34)

Given (34), the same algorithm as in (32) is then used to com-
pute the analytic full variance decomposition for the estimation
tests.
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3. K -function

K =
k∑

i=1

(−1)i
i∏

j=1

X j

where Xi are uniformly distributed in [0,1] ∀i = 1, . . . ,k.
Analytic STi is given by:

STi(K )

= E(K 2) − Ei − 1
4 (T1(i) − 2T2(i) + T3(i)) − T4(i) − T5(i)

V (K )

(35)

where

V (K ) = 1

10

(
1

3

)k

+ 1

18
− 1

9

(
1

2

)2k

+ (−1)k+1 2

45

(
1

2

)k

,

E
(

K 2) = 1

6

(
1 −

(
1

3

)k)
+ 4

15

(
(−1)k+1

(
1

2

)k

+
(

1

3

)k)
,

Ei ≡ 1

6

(
1 −

(
1

3

)i−1)
+ 4

15

(
(−1)i

(
1

2

)i−1

+
(

1

3

)i−1)

and T1 to T5 are geometric series whose compact representation
is given by:

T1(i) = 1

2

(
1

3

)i−2(
1 −

(
1

3

)k−i+1)
,

T2(i) = 1

2

((
1

3

)i−1

−
(

1

3

)k)
,

T3(i) = 3

5

(
4

(
1

3

)k+1

+ (−1)i+k
(

1

2

)k−i−1(1

3

)i)
,

T4(i) = 1

5

(
(−1)i+1

(
1

3

)(
1

2

)i−3

− 4

(
1

3

)i)
,

T5(i) = 1

5

(
(−1)k+1

(
1

3

)(
1

2

)k−2

+ (−1)k+i−1
(

1

3

)i(1

2

)k−i−1)
.

4. B-function

B =
m∑

i=1

Xi · ωi (36)

with m = 5, X ∼ N(0, σX ), ωi ∼ N(0, σωi ), {σXi ; i = 1, . . . ,5} =
{1,1.1,0.9,1.2,0.8}, and {σωi ; i = 1, . . . ,5} = {0.7,1.3,1.4,0.6,

0.95}. For this test case:

V (B) =
m∑

i=1

σ 2
Xi

σ 2
ωi

,

S Xi = Sωi = 0, i = 1,2, . . . ,m,

S Xiωi = σ 2
Xi

σ 2
ωi

V (B)
, i = 1,2, . . . ,m,

S Xiω j = 0, i 
= j,

ST Xiω j
= S Xi + Sω j + S Xiω j

so that in this case:

ST Xiω j
= 0, i 
= j,

ST Xiωi
= S Xiωi = σ 2

Xi
σ 2

ωi

V (B)
.
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